| 1 | 1 | |||
y'= | *(tg(3x+5))'= | *1cos2(3x+5)*(3x+5)'=
| ||
| tg(3x+5) | tg(3x+5) |
| 1 | 3 | |||
= | *1cos2(3x+5)*3= | =
| ||
| tg(3x+5) | sin(3x+5)cos(3x+5) |
| 3 | 6 | |||
= | = | |||
| 12sin(6x+10) | sin(6x+10) |
| 1 | ||
y'= | *(xsinx√1−x2)'=
| |
| xsinx√1−x2 |
| 1 | ||
= | *((xsinx)'*√1−x2+xsinx*(√1−x2)')=
| |
| xsinx√1−x2 |
| 1 | 1 | |||
= | *((x)'*sinx+x*(sinx)')*√1−x2+xsinx* | *(1−x2)')=
| ||
| xsinx√1−x2 | 2√1−x2 |
| 1 | xsinx | |||
= | *((sinx+xcosx)*√1−x2+ | *(−2x))=
| ||
| xsinx√1−x2 | 2√1−x2 |
| 1 | 2x2sinx | |||
= | *(√1−x2*(sinx+xcosx)− | )=
| ||
| xsinx√1−x2 | 2√1−x2 |
| sinx√1−x2 | xcosx√1−x2 | |||
= | + | −
| ||
| xsinx√1−x2 | xsinx√1−x2 |
| 2x2sinx | |
) =
| |
| xsinx√1−x2*2√1−x2 |
| 1 | x | |||
= | + ctgx − | |||
| x | (1−x2) |
| 6 | ||
1: y'= | ||
| sin(6x+10) |
| x3*ctgx | ||
2: y'= | ||
| (x2−1) |