| 1 | 1 | 1 | |||
+ | +...+ | = | |||
| 2√1+1√2 | 3√2 + 2√3 | 16√15 + 15√16 |
| 1 | 1 | 1 | 1 | ||||
+ | + | +...+ | = | ||||
| 2√1+1√2 | 3√2−2√3 | 4√3+3√4 | 16√15+15√16 |
| 2−√2 | 3√2−2√3 | 4√3−3√4 | 16√15−15√16 | |||||
= | + | + | +.... | = | ||||
| 4−2 | 18−12 | 48−36 | 3840−3600 |
| 1 | 1 | 1 | |||
= | − | (dlaczego?) | |||
| 7√6 + 6 √7 | √6 | √7 |
| 2−√2 | 3√2−2√3 | 4√3−3√4 | 16√15−15√16 | |||||
== | + | + | +.... | = | ||||
| 2 | 6 | 12 | 240 |
| √2 | √2 | √3 | √3 | √4 | √15 | √16 | ||||||||
=1− | + | − | + | − | +...+ | − | = | |||||||
| 2 | 2 | 3 | 3 | 4 | 15 | 16 |
| 4 | 1 | 3 | ||||
=1− | =1− | = | ||||
| 16 | 4 | 4 |
| 1 | (n+1)√n − n √n+1 | ||
= | |||
| (n+1)√n + n √n+1 | (n+1)2 n − n2 (n+1) |
| (n+1)√n − n √n+1 | 1 | 1 | ||||
= | = | − | ||||
| n(n+1) | √n | √n+1 |