| du | du | du | |||
−(y+2z) | +(3y+4z) | =0 | |||
| dz | dy | dz |
| dy | dz | |||
− | = | |||
| y+2z | 3y+4z |
| dy | y+2z | ||
=− | |||
| dz | 3y+4z |
| wz+2z | ||
w'z+w=− | ||
| 3wz+4z |
| w+2 | ||
w'z+w=− | ||
| 3w+4 |
| −3w2−5w−2 | ||
w'z= | ||
| 3w+4 |
| 3w+4 | dz | |||
− | dw= | |||
| 3w2+5w+2 | z |
| 3w+4 | ||
∫− | dw | |
| 3w2+5w+2 |
| 3w+4 | ||
∫− | dw | |
| (3w+2)(w+1) |
| (3w+2)+6(w+1)−2(3w+2) | ||
−∫ | dw | |
| (3w+2)(w+1) |
| 6(w+1)−(3w+2) | ||
−∫ | dw | |
| (3w+2)(w+1) |
| 3 | dw | |||
−(2∫ | dw−∫ | ) | ||
| 3w+2 | w+1 |
| w+1 | ||
ln| | |+C | |
| (3w+2)2 |
| wz2+z2 | ||
ln| | |+C | |
| (3wz+2z)2 |
| yz+z2 | ||
ln| | |+C | |
| (3y+2z)2 |
| yz+z2 | ||
ln| | |=ln|z|+C | |
| (3y+2z)2 |
| yz+z2 | |
=Cz | |
| (3y+2z)2 |
| y+z | |
=C | |
| (3y+2z)2 |
| dy | ||
dx=− | ||
| y+2z |
| dz | dy | dz | |||
= | = | ||||
| 1 | −y−2z | 3y+4z |
| dz+dy | dz | ||
= | |||
| 2(y+z) | 1 |
| d(z+y) | |
=2dz | |
| y+z |
| dx | dy | dz | |||
=− | = | ||||
| 1 | y−2z | 3y−4z |
| dy | dz | |||
najpierw − | = | |||
| y−2z | 3y−4z |
| dy | ||
dx=− | aby otrzymać równanie o rozdzielonych zmiennych | |
| y+2z |
Rownania mialam na drugim roku i juz sie troche pozapominalo...