| x3 − x | ||
1. f(x)= | ||
| x2 − x |
| 2x4 − 2x3 | ||
2.f(x)= | ||
| x2 − 1 |
| cosx | ||
3.f(x)= | ||
| x2 −2x+1 |
| x3 − x | x*(x − 1)*(x + 1) | |||
f(x) = | = | = x + 1 | ||
| x2 − x | x*(x − 1) |
| f(x) | ||
y = a*x + b gdzie a = lim(x→∞) | , b = lim(x→∞)[y − a*x] | |
| x |
| f(x) | x3 − x | 1 − 1/x2 | ||||
a = lim(x→∞) | = lim(x→∞) | = lim(x→∞) | = 1 | |||
| x | x3 − x2 | 1 − 1/x |
| x + 1 | 1 + 1/x | |||
lub a = lim(x→∞) | = lim(x→∞) | = 1 | ||
| x | 1 |
| x3 − x | x3 − x − x3 + x2 | |||
b = lim(x→∞)[ | − 1*x] = lim(x→∞) | = | ||
| x2 − x | x2 − x |
| x2 − x | ||
lim(x→∞) | = 1 | |
| x2 − x |
| 2*x4 − 2*x3 | 2*x3*(x − 1) | 2*x3 | ||||
f(x) = | = | = | ||||
| x2 − 1 | (x − 1)*(x + 1) | x + 1 |
| f(x) | 2*x2 | 2 | ||||
a = lim(x→∞) | = lim(x→∞) | = lim(x→∞) | = ≈ | |||
| x | x + 1 | 1/x + 1/x2 |
| cos(x) | ||
f(x) = | ||
| x2 − 2*x + 1 |
| f(x) | cos(x) | |||
a = lim(x→∞) | = lim(x→∞) | = | ||
| x | x3 − 2*x2 + x |
| 0 | |||||||||
lim(x→∞) | = | = 0 | ||||||||
| 1 − 2/x + 1/x2 | 1 |
| cos(x) | ||
b = lim(x→∞)( | − 0*x} = 0 | |
| x2 − 2*x + 1 |