Wiadomo, że logxy x=2, gdzie x>0, y>0, x≠y, x≠1, y≠1 i xy≠1. Oblicz
logx:y x
| logx x | 1 | 1 | ||||
logxy x = | = | = | ||||
| logx xy | logx x + logx y | 1+ logxy |
| 1 | |
= 2 | |
| 1+ logxy |
| 1 | ||
logxy = − | ||
| 2 |
| 1 | 1 | 1 | 1 | ||||||||||||||
logx/y x = | = | = | = | = | |||||||||||||
| logx x − logxy | 1 − (−1/2) | 1 + 1/2 |
| 1 | 2 | |||||||||
= | = | |||||||||
| 3 |