aksjomaty
ania09: wiadomo, ze A, B oznaczaja zdarzenia losowe zawarte w przestrzeni Ω pewnego doswiadczenia
losowego, Jesli P(A'∩B)=1/4 i P(B)=7/12 to prawdopodobienstwo warunkowe P(A/B) to
A) 2/7
b)3/7
c)4/7
d)5/7
28 mar 15:59
Jack: P(A' ∩ B) = P(B \ A) = P(B) − P (A∩B)
stąd
| 7 | | 1 | | 7 − 3 | | 4 | | 1 | |
P(A∩B) = P(B) − P(A'∩B) = |
| − |
| = |
| = |
| = |
| |
| 12 | | 4 | | 12 | | 12 | | 3 | |
mamy znalezc
P(A/B) ?
czy to jest warunkowe, czy odjac?
jesli warunkowe
| P(A∩B) | | | | 12 | | 4 | |
P(A | B) = |
| = |
| = |
| = |
| |
| P(B) | | | | 3*7 | | 7 | |
28 mar 16:11
28 mar 16:12