| arcsin ex | ||
∫ | dx | |
| ex |
| 1 | ||
=∫ | arctgtdt... i prosta całka | |
| t2 |
| ex | ||
∫e−xarcsin{ex}dx=−e−xarcsin{ex}+∫e−x | dx | |
| √1−e2x |
| dx | ||
∫e−xarcsin{ex}dx=−e−xarcsin{ex}+∫ | ||
| √1−e2x |
| t | ||
dx= | dt | |
| t2−1 |
| 1 | t | 1 | ||||
∫ | dt=∫ | dt | ||||
| t | t2−1 | t2−1 |
| 1 | (t+1)−(t−1) | ||
∫ | dt | ||
| 2 | (t−1)(t+1) |
| 1 | dt | dt | |||
(∫ | −∫ | ) | |||
| 2 | t−1 | t+1 |
| 1 | t−1 | |||
= | ln| | |+C | ||
| 2 | t+1 |
| 1 | √1−e2x−1 | |||
= | ln| | |+C | ||
| 2 | √1−e2x−1 |
| 1 | 2−e2x−2√1−e2x | |||
= | ln| | |+C | ||
| 2 | −e2x |
| 1 | −2+e2x+2√1−e2x | |||
= | ln| | |+C | ||
| 2 | e2x |
| 1 | −2+e2x+2√1−e2x | |||
−e−xarcsin{ex}+ | ln| | |+C | ||
| 2 | e2x |