(e2x)'*√x+e2x*(√x)'
| 1 | ||
e2x*(2x)'*√x+e2x* | ||
| 2√x |
| e2x | ||
2e2x*√x+ | ||
| 2√x |
| e2x | ||
2√xe2x+ | ||
| 2√x |
| 2−√x | ||
f(x) = log√3 | ||
| 2+√x |
, natomiast kolejna już źle.
| 2−√x | ||
log√3* | ||
| 2+√x |
| 1 | 2−√x | ||||||||
* ( | )' | ||||||||
| 2+√x |
| 1 | |||||||
* ((2−√x)'(2+√x)−(2−√x)(2+√x)' | |||||||
|
| 1 | |||||||
* (−0,5x−1,5)(2+x0,5)−(2−√x)(0,5x−0,5) | |||||||
|
| 1 | |||||||
* (−x−1,5−0,5x−1)−(x−0,5−1) | |||||||
|
| (−x−1,5−0,5x−1)−(x−0,5−1) | |||||||
|
| −x−1,5−0,5x−1−x−0,5+1 | |||||||
|
I tak jestem w szoku że ta pierwsza mi wyszła, bo dajecie masakrycznie trudne
| −2 | ||
= | ||
| (4−x)√xln√3 |
, póki co to dla mnie jeszcze za wysoki
poziom
| 21 | ||
f(x) = 35√x7 = ......= | 5√x2 | |
| 5 |
| 5−x2 | 1 | 5+x2 | −20x | |||||
f(x) = √ | = .........= | √ | * | |||||
| 5+x2 | 2 | 5−x2 | 25+10x2+x4 |
| ex+x3 | 3x2−x3 | |||
f(x) = | = ....... = | |||
| 4ex | 4ex |
| 1 | √x | 1 | ||||
f(x) = sin2√ | = ......... = − | *sin2√ | ||||
| x | 2x2 | x |
| 5−x2 | ||
1. [√ | ]' | |
| 5+x2 |
| 1 | −2x*(5+x2)−(5−x2)*2x | |||||||||||
* ( | ) | |||||||||||
| (5+x2)2 |
| 1 | −20x | |||||||||||
* | ||||||||||||
| (5+x2)2 |
| 1 | −20x | |||||||||||
* | ||||||||||||
| 25+10x2+x4 |
| ex+x3 | ||
2. [ | ]' | |
| 4ex |
| (ex+3x2)(4ex)−(ex+x3)(ex)4 | |
| 4ex*4ex |
| (ex+3x2)−(ex+x3) | |
| 4ex |
| 3x2−x3 | |
| 4ex |
| 1 | ||
[sin2√ | ]' | |
| x |
| 1 | 1 | 1 | ||||
2sin√ | * cos √ | * [√ | ]' | |||
| x | x | x |
| 1 | 1 | 1 | ||||
2sin√ | * cos √ | * (− | x−1,5) | |||
| x | x | 2 |
| √x | 1 | |||
− | *sin2√ | |||
| 2x2 | x |
| 1 | −1 | 1 | −√x | |||||
(− | x−1,5)= | * | = | |||||
| 2 | 2 | √x3 | 2x2 |
| 1 | 1 | 1 | ||||
2*sin√ | *cos√ | =sin2√ | ||||
| x | x | x |
Dzięki
| 6x | ||
[ecos2x * sin4√ | ]'= | |
| 2+3x2 |
| 6x | ||
ecos2x*2cosx(−sinx) * sin4√ | + ecos2x * | |
| 2+3x2 |
| 6x | 6x | 6x | ||||
4sin3√ | *cos√ | *[√ | ]'= | |||
| 2+3x2 | 2+3x2 | 2+3x2 |
| 6x | ||
−ecos2x*sin2x*sin4√ | + ecos2x | |
| 2+3x2 |
| 6x | 6x | 1 | |||||||||||||
*4sin3√ | *cos√ | * | * | ||||||||||||
| 2+3x2 | 2+3x2 |
|
| 6(2+3x2)−6x(6x) | ||
| (2+3x2)2 |
| 6x | ||
−ecos2x*sin2x*sin4√ | + ecos2x | |
| 2+3x2 |
| 6x | 6x | 1 | |||||||||||||
*4sin3√ | *cos√ | * | * | ||||||||||||
| 2+3x2 | 2+3x2 |
|
| −18x2+12 | ||
| 4+6x2+9x4 |
| 1 | ||
f(x) = log2(log3x) = ............ = | ||
| log3x ln2*xln3 |
| 1 | ||
f(x) = ln[ln(lnx)] = ............ = | ||
| x ln(lnx) lnx |
| 1 | 1 | 1 | ||||
log2(log3x)= | * | = | Tak niepewnie ale wyszło ![]() | |||
| xIn3 | log3xIn2 | log3xIn2*xIn3 |
| 1 | 1 | 1 | 1 | |||||
In[In(Inx)]= | * | * | = | |||||
| x | Inx | In(Inx) | xInxIn(Inx) |
| 1 | 1 | |||
x1Inx= | *x1Inx*( | )' | ||
| Inx | Inx |
| 1 | 0*Inx−1/x(1) | |||
x1Inx= | *x1Inx* ( | ) | ||
| Inx | Inx2 |
| 1 | −1/x | |||
x1Inx= | *x1Inx* | |||
| Inx | Inx2 |
| 1 | |
=logxe | |
| lnx |
| 1 | ||
f(x) = 5ln2x = ......... = 5ln2x*ln5* | ||
| x |
| 1 | ||
5In2x=5In2x*In5* | ||
| x |
| 1 | ak | |||
f(x) = | = ............ = − | |||
| n√(ax+b)k | nn√(ax+b)k+n |
| x2+3x−2 | −2x2−6x−13 | |||
f(x) = | = ............ = | |||
| x2+x−5 | (x2+x−5)2 |
| 1 | |
= | |
| (ax+b)k/n |
| −k | 1 | ||
* | *a | ||
| n | (ax+b)k/n−1 |
| −ka | |
| n(ax+b)k/n −1 |
| 7 | 8 | |||
f(x) = 8ln | = ........... = − | |||
| 2x+4 | x+2 |
| x2+3x−2 | |
= | |
| x2+x−5 |
| (2x+3)(x2+x−5)−(x2+3x−2)(2x+1) | |
| (x2+x−5)2 |
| 2x3+2x2−10x+3x2+3x−15−(2x3+x2+6x2+3x−4x−2) | |
| (x2+x−5)2 |
| 2x3+2x2−10x+3x2+3x−15−2x3−x2−6x2−3x+4x+2 | |
| (x2+x−5)2 |
| −2x2−6x−13 | |
| (x2+x−5)2 |
| 7 | ||
8In* | = | |
| 2x+4 |
| 2x+4 | ||
8* | Tutaj nie wiem ![]() | |
| 7 |
| 7 | ||
8In* | ||
| 2x+4 |
| 2x + 4 | −14 | −8 | ||||
= 8 * | * | = | ||||
| 7 | (2x + 4)2 | x + 2 |
| 7 | |
=y | |
| 2x+4 |
| 8 | ||
(8lny)'= | *y' | |
| y |
| 7 | ||
Aj faktycznie trzeba jeszcze przemnożyć przez [ | ]' bo funkcja złożona, dziękuję ![]() | |
| 2x+4 |
| 5 | 5 | |||
f(x) = ( | )x = ...................= ( | )x(ln5x−1) | ||
| x | x |
i na koniec (z1)'+(z2)'=z'
z'h+zh'
Może ktoś sprawdzić czy dobrze robiłem ?
25x*36x*x9
25x=f
36x=g
x9=H
f*g*h
Liczę więc pochodną, najpierw zajmę się tylko f i g
(f*g)'=f'g+fg'
Zatem podstawiam:
(25x*36x)'=(25x)'*36x+25x*(36x)'
Zajmuję się teraz prawą stroną równania:
(25x)'*36x+25x*(36x)'=
(25x*In2*5)*36x+25x*(36x*In3*6)=
(25x*5In2)*36x+25x*(36x*6In3) I nazwę to jako (f*g)'=C
Przechodzimy dalej i wracamy do H.
C'H+CH' Podstawiamy:
[(25x*5In2)*36x+25x*(36x*6In3)]'*x9+[(25x*5In2)*36x+25
x*(36x*6In3)]*(x9)']]=
Z racji tego że jest dużo składników i trochę liczenia ponazywam sobie pewne wyrażenie(od lewej
strony):
a=(25x*5In2)
b=36x
c=25x
d=36x*6In3
To są składniki z pierwszego nawiasu kwadratowego równania głównego (oddzielone serduchami
)
z których liczę pochodną
Zaczynam:
a'=25x*5In2*5In2+0
b'=36x*6In3
liczę więc (a*b)'=a'b+ab' i podstawiam:
(25x*5In2*5In2)*36x+(25x*5In2)*36x*6In3 Mam już połowę pochodnej z pierwszego
nawiasu równania głównego
Liczę 2 część pierwszego nawiasu równania głównego
c'=25x*5In2
d'=36x*6In3*6In3+0
i liczę teraz (c*d)'=c'd+cd' i podstawiam:
(36x*6In3*6In3)*25x+(36x*6In3)*36x*6In3
Policzyłem całą pochodną z pierwszego nawiasu równania głównego.
Mam już prawie wszystko więc wracam do równania głównego i podstawiam:
{[(25x*5In2*5In2*36x)+(25x*5In2*36x*6In3)]+[(36x*6In3*6In3*2^
{5x})+36x*6In3*25x*5In2)]}
x9+[(25x*5In2*36x+25x*36x*6In3)]*9x8
Pomiędzy wykrzyknikami jest pochodna z pierwszego nawiasu równania głównego. Pozostała tylko
wyłączanie czynników przed nawias itd. Starałem się zapisać jak najbardziej zrozumiale, może
ktoś sprawdzić
| 5 | ||
( | )x= | |
| x |
| 5 | 5 | 5 | ||||
( | )x*In | *( | )' | |||
| x | x | x |
| 5 | 5 | |||
( | )x*In | *(−5/x2) | ||
| x | x |
| sinx | cosx | |||
f(x) = (sinx+cosx)(tgx+ctgx) = .........= | − | |||
| cos2x | sin2x |
| 1 | ||
=(5x)x[1*ln5x+x( | )*(5x)']= | |
| 5x |
| 1 | 1 | |||
(tgx+ctgx)'= | − | |||
| cos2x | sin2x |
| 1 | 1 | |||
(cosx−sinx)(tgx+ctgx)+(sinx+cosx)( | − | ) | ||
| cos2x | sin2x |
| sinx | 1 | 1 | cosx | |||||
cosxtgx+cosxctgx−sinxtgx−sinxctgx+ | − | + | − | |||||
| cos2x | sinx | cosx | sin2x |
| sinx | cosx | sinx | cosx | |||||
cosx* | +cosx* | −sinx* | −sinx* | + | ||||
| cosx | sinx | cosx | sinx |
| sinx | 1 | 1 | cosx | ||||
− | + | − | = | ||||
| cos2x | sinx | cosx | sin2x |
| cos2x | sin2x | sinx | 1 | 1 | cosx | |||||||
sinx+ | − | −cosx+ | − | + | − | |||||||
| sinx | cosx | cos2x | sinx | cosx | sin2x |
| sin2x | cos2x | sin2x | cos2x | ||||
+ | − | − | + | ||||
| sinx | sinx | cosx | cosx |
| sinx | 1 | 1 | cosx | ||||
− | + | − | = | ||||
| cos2x | sinx | cosx | sin2x |
| 1 | sin2x | cos2x | sinx | 1 | 1 | ||||||
− | − | + | − | + | |||||||
| sinx | cosx | cosx | cos2x | sinx | cosx |
| cosx | ||
− | = | |
| sin2x |
| sin2x | cos2x | sinx | 1 | |||||
− | − | + | + | |||||
| cosx | cosx | cos2x | cosx |
| cosx | ||
− | = | |
| sin2x |
| sin2x | cos2x | sinx | 1 | cosx | ||||||
−( | + | )+ | + | − | = | |||||
| cosx | cosx | cos2x | cosx | sin2x |
| −1 | sinx | 1 | cosx | ||||
+ | + | − | = | ||||
| cosx | cos2x | cosx | sin2x |
| sinx | cosx | ||
− | |||
| cos2x | sin2x |
| 1 | ||
f(x) = arc cos1x = .....= | ||
| √x4−x2 |
| 1 | ||
12arctg2(1/x)*(1/x)' | ||
| 1+x2 |
| −1 | 1 | |||
12arctg2(1/x)*( | )* | |||
| x2 | 1+x2 |
| −1 | ||
12arctg2(1/x)* | ||
| x2+x4 |
| 1 | ||
(In(cos2x)*(In(cos2x))'=[ | *2cosx*(−sinx)][In(cos2x)]+[In(cos2x) | |
| cosx |
| 1 | ||
* | *2cosx*(−sinx)]= | |
| cosx |
| −1 | ||
12arctg2(1/x)* | +28x6*In2(cos2x)+4x7*(−2sinx)(In(cos2x))+(In(cos2x))(−2sinx) | |
| x2+x4 |
| 1 | ||
arc cos | ||
| x |
| −1 | −1 | ||
* | |||
| √1−x2 | x2 |
| 1 | |
| √x4(1−x2) |
| 1 | |
| √x4−x6 |
| 1 | ||
W pierwszej części popraw: | ||
| 1 + (1/x)2 |
| 1 | ||
[ln2(cos2x)]' = 2ln(cos2x)* | *2cosx*(−sinx) | |
| cos2x |
| 1 | ||
(1+ | )x | |
| x |
| 1 | 1 | 1 | ||||
(1+ | )x*In(1+ | )*(1+ | )' | |||
| x | x | x |
| 1 | 1 | −1 | ||||
(1+ | )x*In(1+ | )*( | ) | |||
| x | x | x2 |
| 1 | −1 | |||
In(1+1/x)+x( | )* | |||
| 1+1/x | x2 |
| x | −1 | |||
In(1+1/x)+ | * | |||
| 1+1/x | x2 |
| −x | ||
In(1+1/x)+ | ||
| x2+x |
| −1 | ||
In(1+1/x)+ | ||
| x+1 |
| x5 | ||
f(x) = 15x5 arc cosx − 14(x4+x3) = ......= x4 arc cosx − | − x3 | |
| 5√1−x2 |
| 3 | ||
− | x2 | |
| 4 |
| 1 | 1 | ||
x5arc cosx − | (x4+x3) | ||
| 5 | 4 |
| 1 | |
(x5arc cosx)'= | |
| 5 |
| 1 | −1 | ||
*(5x4arccosx+x5* | ) | ||
| 5 | √1−x2 |
| −x5 | ||
x4arccosx+ | ||
| 5√1−x2 |
| x5 | ||
x4arccosx− | ||
| 5√1−x2 |
| 1 | |
(x4+x3) | |
| 4 |
| 1 | |
(4x3+3x2) | |
| 4 |
| 3x2 | ||
x3+ | ||
| 4 |
| x5 | 3x2 | |||
x4arccosx− | −(x3+ | ) | ||
| 5√1−x2 | 4 |
| x5 | 3x2 | |||
x4arccosx− | −x3− | |||
| 5√1−x2 | 4 |
| 2√x+3 | ||
f(x) = √cosx − √x + 3√x = ...= − sinx− | ||
| 4√x2+3x√x |
| 1 | −sinx | |||
√cosx= | *(−sinx)= | |||
| 2√cosx | 2√cosx |
| 1 | ||
√√x=x1/4=1/4x−3/4= | ||
| √√(0,25x)3 |
| 1 | ||
√3√x=31/2*x1/4=√3(x)1/4=√3*1/4x−3/4= | *√3 | |
| √√(0,25x)3 |
| −sinx | 1 | 1 | |||
− | + | *√3 | |||
| 2√cosx | √√(0,25x)3 | √√(0,25x)3 |
| −sinx | √3−1 | ||
+ | |||
| 2√cosx | √√(0,25x)3 |
Czy w taki sposób mogę liczyć ?
| 1 | 2√x+3 | |||
..= | *(−sinx− | ) | ||
| 2√cosx−√x+3√x | 4√x2+3x√x |
| 1 | 1 | −3 | |||
*[(−sinx)− | *( | )] | |||
| 2√cosx−√x+3√x | 2x | x2 |
| 1 | 3 | ||
*[(−sinx)+ | ] | ||
| 2√cosx−√x+3√x | 2x3 |
| 3 | ||
y' = (x+3√x)' = x' + 3(√x)' = 1+ | ||
| 2√x |
| 1 | ||
z' = (cosx − √x+3√x)' = (cosx − √y)' = (cosx)' − (√y)' = −sinx − | *y' = | |
| 2√y |
| 1 | 3 | |||
−sinx − | *(1+ | ) = | ||
| 2√x+3√x | 2√x |
| 1 | 2√x+3 | |||
= − sinx − | * | |||
| 2√x+3√x | 2√x |
| 1 | ||
f'(x) = (√z)' = | *z' = dokończ | |
| 2√z |
| 1 | ||
f(x) = sinx − | cos4x = .....= cosx + 2sinx cos3x | |
| 2 |
| 1 | |
(arsinh(x)+x√x2+1) | |
| 2 |
| 1 | |
*In(x+√x2+1)+ | |
| 2 |
| 1 | x2+1 | |||
pochodna z √x2+1= | *x2+1= | |||
| 2√x2+1 | 2√x2+1 |
| x2+1 | ||
√x2+1+x* | = | |
| 2√x2+1 |
| x3+x | ||
√x2+1+ | ||
| 2√x2+1 |
| 1 | x3+x | ||
*In(x+√x2+1)+ √x2+1+ | |||
| 2 | 2√x2+1 |
| 1 | √x2+1 | x3+x | |||
*In(x+√x2+1)+ | + | ||||
| 2 | 2 | 4√x2+1 |
| 2x | x | |||
[√x2+1]'= | = | |||
| 2√x2+1 | √x2+1 |
Już biorę się do roboty.
| 1 | |
(arsinh(x)+x*√x2+1) | |
| 2 |
| x | ||
In(1+ | ) | |
| √x2+1 |
| x2 | ||
√x2+1+ | ||
| √x2+1 |
| 1 | x | x2 | |||
(In(1+ | )+√x2+1+ | ) | |||
| 2 | √x2+1 | √x2+1 |
| 1 | x | ||
*(1+ | ) | ||
| x+√x2+1 | √x2+1 |
| 1 | x+√x2+1 | ||
*( | ) | ||
| x+√x2+1 | √x2+1 |
| 1 | |
| √x2+1 |
Reszta się zgadzała ?
| 1 | 1 | x2 | |||
( | +√x2+1+ | ) | |||
| 2 | √x2+1 | √x2+1 |
| 1 | √x2+1 | x2 | |||
+ | + | ||||
| 2√x2+1 | 2 | 2√x2+1 |
| x2+1 | √x2+1 | ||
+ | |||
| 2√x2+1 | 2 |
| 1 | ||
[ | (arcsin(x)+x√1−x2)]' | |
| 2 |
| 1 | ||
[arcsin(x)]'= | ||
| √1−x2 |
| 1 | −2x | −x | ||||
[√1−x2]'= | *(−2x)= | = | ||||
| 2√1−x2 | 2√1−x2 | √1−x2 |
| −x2 | ||
√1−x2+ | ||
| √1−x2 |
| 1 | ||
[ | (arcsin(x)+x√1−x2)]'= | |
| 2 |
| 1 | 1 | −x2 | |||
( | +√1−x2+ | ) | |||
| 2 | √1−x2 | √1−x2 |
| 1 | 1−x2 | ||
( | +√1−x2) | ||
| 2 | √1−x2 |
| 1 | 1−x2 | (√1−x2) | |||
( | + | ) | |||
| 2 | √1−x2 | √1−x2 |
| 1 | 1−x2 | 1−x2 | |||
( | + | ) | |||
| 2 | √1−x2 | √1−x2 |
| 1 | 2−2x2 | ||
( | ) | ||
| 2 | √1−x2 |
| 2−2x2 | |
| 2√1−x2 |
| 1−x2 | |
| √1−x2 |
| √x2+1−x | −2 | |||
f(x) = log12 | = ....= | |||
| √x2+1+x | √x2+1*ln12 |
| √x2+1−x | ||
[log12 | ]' | |
| √x2+1+x |
| 1 | ||||||||||||||||
*pochodna tego ilorazu | ||||||||||||||||
|
| √x2+1−x | ||
[ | ]'= | |
| √x2+1+x |
| 1 | |
*2x−1 | |
| 2√x2+1 |
| x | |
−1 | |
| √x2+1 |
| x | ||
√x2+1+x= | +1 | |
| √x2+1 |
| x | x | |||
( | −1)*(√x2+1+x)−(√x2+1−x)( | +1) | ||
| √x2+1 | √x2+1 |
| x(√x2+1+x) | x(√x2+1−x) | ||
−(√x2+1+x)−[ | +(√x2+1−x)] | ||
| √x2+1 | √x2+1 |
| x(√x2+1+x) | x(√x2+1−x) | ||
−(√x2+1+x)− | −(√x2+1−x) | ||
| √x2+1 | √x2+1 |
| x√x2+1+x2 | x√x2+1−x2 | |||
−2(√x2+1+x)+ | − | |||
| √x2+1 | √x2+1 |
| x√x2+1+x2−x√x2+1−x2 | ||
−2(√x2+1+x)+ | ||
| x√x2+1 |
| −2(√x2+1+x) | |
= | |
| (√x2+1+x)2 |
| −2 | |
| √x2+1+x |
| 1 | −2 | |||||||||||||||||
* | ||||||||||||||||||
| √x2+1+x |
| −2 | |
| (√x2+1−x)In1/2 |
Wynik się minimalnie różni, czy na pewno odpowiedź jest dobra ?
| 5tg4√x | ||
f(x) = tg5√x = ..= | ||
| 2√x cos2√x |
| 1 | 1 | |||
5tg4√x* | * | = | ||
| cos2(√x) | 2√x |
| 5tg4√x | |
| 2√x*cos2√x |
| 10 | ||
f(x) = −5cos4*16x = ...... = | (cos16x)3*sin16x | |
| 3 |
| 2 | −6cosx | |||
f(x) = | = .... = | |||
| sin3x | sin4x |
x3e4xcosx i ja bym to zrobił tak:
k=[x3]'=3x2
l=[e4x]'=4e4x
m=[cosx]=−sinx
k'l+kl'=C
C'm+Cm'
Więc podstawiam:
C=3x2*e4x+x3*4e4x
C'=6xe4x+3x2*4e4x+3x24e4x+x316e4x
C'm+Cm'=
[6xe4x+3x2*4e4x+3x24e4x+x316e4x]cosx+[3x2*e4x+x3*4e4x](−sinx)
Dobrze myślę ?
| arc sinx | arc cosx + arc sinx | |||
f(x) = | = ...... = | |||
| arc cosx | √1 − x2 (arc cosx)2 |
| 10 | |
cos3(1/6x)(sin(1/6x)) | |
| 3 |
| 2 | |
= | |
| sin3x |
| −2(sin3x)' | |
| (sin3x)2 |
| −6sin2x(cosx) | |
| sin6x |
| −6cosx | |
| sin4x |
| arcsinx | |
= | |
| arccosx |
| |||||||||||||
| arccosx2 |
| |||||||||||||
| arccosx2 |
| arccosx+arcsinx | |
| √1−x2(arccosx)2 |
Ale tam chyba sin−4 a nie −4x
| 5 | x3 | |||
f(x) = arc sin√x5 = ... = | √ | |||
| 2 | 1−x5 |
| 1 | ||
f(x) = log7 tg(13π + 12x) = .... = | ||
| sin(23π + x) ln7 |
| 1 | |
*5/2x3/2 | |
| √1−x5 |
| 5√x3 | |
= | |
| 2√1−x5 |
| 5 | x3 | ||
*√ | |||
| 2 | 1−x5 |
| 1 | 1 | ||
* | *(1/3π+1/2x)'= | ||
| tg(1/3π+1/2x)In7 | cos2(1/3π+1/2x) |
| 1 | 1 | ||
* | *(0+1/2)= | ||
| tg(1/3π+1/2x)In7 | cos2(1/3π+1/2x) |
| 1 | 1 | ||
* | *1/2= | ||
| tg(1/3π+1/2x)In7 | cos2(1/3π+1/2x) |
| 1 | 1 | ||
* | *1/2 | ||
| sin/cos(1/3π+1/2x)In7 | cos2(1/3π+1/2x) |
| 1 | |
| 2sincos(1/3π+1/2x)In7 |
| 1 | |
| sin[2(1/3π+1/2x)]In7 |
| 1 | |
| sin(2/3π+x)In7 |
| x+3 | 3 | |||
f(x) = log4√ | = ...= | |||
| 3−x | (9−x2)*ln4 |
| sinx + tg2x | ||
f(x) = 8ln tg 23x + | = ... | |
| 2x − 3 |
| 32 | (cos3x+2 tg x)(2x − 3)− 2sinx cos2x−2 sin2x | |||
= | + | |||
| 3sin43x | (2 x − 3)2 *cos2x |
| x+3 | ||
[log4√ | ]' | |
| 3−x |
| 1 | 1 | x+3 | |||||||||||||||||||||
* | ]*[ | ]' | |||||||||||||||||||||
|
| 3−x |
| 1 | 1 | 1(3−x)−(x+3)(−1) | |||||||||||||||||||||
* | ]*[ | ] | |||||||||||||||||||||
|
| (3−x)2 |
| 1 | 1 | 3−x+x+3 | |||||||||||||||||||||
* | ]*[ | ] | |||||||||||||||||||||
|
| (3−x)2 |
| 1 | 1 | 6 | |||||||||||||||||||||
* | ]*[ | ] | |||||||||||||||||||||
|
| (3−x)2 |
| 1 | 1 | 3 | |||||||||||||||||||||
* | ]*[ | ] | |||||||||||||||||||||
|
| (3−x)2 |
| 1 | 3 | ||||||||
*[ | ] | ||||||||
| (3−x)2 |
| 3 | |
| (9−x2)*In4 |
| 2 | sinx+tg2x | |||
8In tg( | x) + | |||
| 3 | 2x−3 |
| 2 | ||
8In tg( | x)=z | |
| 3 |
| sinx+tg2x | |
=y | |
| 2x−3 |
| 2 | ||
z'=[8In tg( | x)]' | |
| 3 |
| 2 | ||
[8(In tg( | x))]' | |
| 3 |
| 1 | 1 | 2 | |||||||||||||
8( | * | * | ) | ||||||||||||
| cos2x | 3 |
| 2 | |||||||||||||||||
8( | ) | ||||||||||||||||
|
| 2 | |||||||||||
8( | ) | ||||||||||
|
| 16 | |
| 3sincos(2/3x) |
| 32 | |
| 6sincos(2/3x) |
| 32 | |
| 3sin(4/3x) |
| sinx+tg2x | ||
y'=[ | ]' | |
| 2x−3 |
| [sinx+tg2x]'(2x−3)−(sinx+tg2x)[2x−3]' | |
| (2x−3)2 |
| ||||||||||
| (2x−3)2 |
| ||||||||||
| (2x−3)2 |
| ||||||||||||||||
* cos2x/cos2x | ||||||||||||||||
| (2x−3)2 |
| (cos3x+2tgx)(2x−3)−(sinxcos2x+sin2x)2 | |
| (2x−3)2cos2x |
| (cos3x+2tgx)(2x−3)−(2sinxcos2x+2sin2x) | |
| (2x−3)2cos2x |
| (cos3x+2tgx)(2x−3)−2sinxcos2x−2sin2x | |
| (2x−3)2cos2x |
| 32 | (cos3x+2tgx)(2x−3)−2sinxcos2x−2sin2x | ||
+ | |||
| 3sin(4/3x) | (2x−3)2cos2x |
| x2−x | 1 | |||
f(x) = | + cos2α − | sinα | ||
| 3x+1 | 2 |
| (3x + 1)(2x − 1) − 3(x2 − x) | ||
f'(x) = | ||
| (3x + 1)2 |
| (3x − 1)(x + 1) | ||
f'(x) = | ||
| (3x + 1)2 |
α=z (dla ułatwienia)
| x2−x | 1 | |||
[ | +cos2z− | sinz]' | ||
| 3x+1 | 2 |
| x2−x | |
=k | |
| 3x+1 |
| 1 | |
sinz=m | |
| 2 |
| x2−x | ||
k'=[ | ]' | |
| 3x+1 |
| (2x−1)(3x+1)−(x2−x)(3) | |
| (3x+1)2 |
| (6x2+2x−3x−1)−(3x2−3x) | |
| (3x+1)2 |
| 6x2−x−1−3x2+3x | |
| (3x+1)2 |
| 3x2+2x−1 | |
=k' | |
| (3x+1)2 |
| 3x2+2x−1 | |
| (3x+1)2 |
[cos2(3x)*sinx]'
[cos2(3x)]'sinx+cos2(3x)[sinx]'
[2cos(3x)*(−sin3x)*3](sinx)+cos2(3x)(cosx)
[2cos(3x)*(−3sin3x)](sinx)+cos2(3x)(cosx)
[−6cos(3x)*sin(3x)](sinx)+cos2(3x)(cosx)
[−(6cos(3x)*sin(3x)](sinx)+cos2(3x)(cosx)
[−3sin(6x)](sinx)+cos2(3x)(cosx)
Dobrze ?
| 1 | ||
sinx = | ||
| 2 |
jak chcesz koniecznie pochodne to mozesz jeszcze wielu zmiennych
pochodna po x, po y itd...
ale najpierw sie naucz tego co wymagaja na maturze
| 1 | ||
− | *[1−x+√5−2x+x2]' | |
| 1−x+√5−2x+x2 |
| 1 | 1 | |||
− | *[0−1+ | *(5−2x+x2)'] | ||
| 1−x+√5−2x+x2 | 2√5−2x+x2 |
| 1 | 1 | |||
− | *[−1+ | *(−2+2x)] | ||
| 1−x+√5−2x+x2 | 2√5−2x+x2 |
| 1 | −2+2x | |||
− | *[−1+ | ] | ||
| 1−x+√5−2x+x2 | 2√5−2x+x2 |
| 1 | −2+2x−2√5−2x+x2 | |||
− | *[ | ] | ||
| 1−x+√5−2x+x2 | 2√5−2x+x2 |
| 2−2x+2√5−2x+x2 | |
| (2√5−2x+x2)(1−x+√5−2x+x2) |

| 1 | ||
Niebieska −>> y = | ||
| 2 |
| 1 | ||
jak widac sin przyjmuje | w dwoch miejsach w jednym okresie (zielone strzalki) | |
| 2 |
| 1 | ||
sin 30 = | ||
| 2 |
| 1 | ||
sin (180−30) = | ||
| 2 |
| 1 | |
| √x2−2x+5 |
| 2 | 5 | |||
f(x) = 5ln | = .. = | |||
| x−√x2−1 | √x2−1 |
| 2 | ||
5(In | )' | |
| x−√x2−1 |
| x−√x2−1 | 2 | |||
5( | )*( | )' | ||
| 2 | x−√x2−1 |
| x−√x2−1 | −2(x−√x2−1)' | |||
5( | )*( | ) | ||
| 2 | (x−√x2−1)2 |
| x−√x2−1 |
| ||||||||||||
5( | )*( | ||||||||||||
| 2 | (x−√x2−1)2 |
| ||||||||
5(x−√x2−1)* | ||||||||
| (x−√x2−1)2 |
| ||||||||
5* | ||||||||
| (x−√x2−1) |
| x−√x2−1 | 1 | |||
5*( | )* | |||
| √x2−1 | x−√x2−1 |
| 5 | |
| √x2−1 |