| 3 | ||
x∊< | π; 2π> | |
| 2 |
| 2 | ||
2x= | π+kπ | |
| 3 |
| 1 | kπ | |||
x= | π+ | |||
| 3 | 2 |
| 11 | ||
x= | π | |
| 6 |
| 1 | ||
max. f(x)= | (1+3cos2x) | |
| 6 |
| 1 | ||
1≤1+3cos2x≤4 /* | ||
| 6 |
| 1 | 1 | 2 | |||
≤ | (1+3cos2x)≤ | ||||
| 6 | 6 | 3 |
| 2 | ||
max. f(x)= | ||
| 3 |

| 1 | ||
( | a)2=y2+y2−2y2cosβ | |
| 2 |
| |||||||
=cosα | |||||||
| y |
| a | ||
y= | ||
| 3cosα |
| 1 | |
a2=2*y2(1−cosβ) | |
| 4 |
| 1 | a2 | ||
a2=2* | (1−cosβ) /:a2 | ||
| 4 | 9cos2α |
| 1 | 2 | ||
= | (1−cosβ) | ||
| 4 | 9cos2α |
| 9cos2α | |
=1−cosβ | |
| 8 |
| 9cos2α | ||
cosβ=1− | ||
| 8 |
| 8−9cos2α | ||
cosβ= | ||
| 8 |
| 5 | ||
odp. = | tg2 α ? | |
| 2 |
| 1 − 3 cos2α | |
| 2 |
W ostrosłupie prawidłowym trójkątnym kąt między ścianą boczną a podstawą jest równy α.
Oblicz cosinus kąta między ścianami bocznymi.
| 1 | a√3 | |||
|FO|= | h= | |||
| 3 | 6 |
| |OF| | ||
cosα= | ||
| |FS| |
| |OF| | ||
|FS|= | ||
| cosα |
| h | ||
|FS|= | ||
| 3cosα |
| H | h*tgα | |||||||||
tgα= | ⇔H= | |||||||||
| 3 |
| 1 | h | a*h | ||||
PΔABS= | *a* | = | ||||
| 2 | 3cosα | 6cosα |
| 2 | ||
k2=H2+( | h)2 | |
| 3 |
| h2*tg2α | 4 | h2 | h2 | sin2α+4cos2α | ||||||
k2= | + | h2= | *(tg2α+4)= | * | ||||||
| 9 | 9 | 9 | 9 | cos2α |
| h√1+3cos2α | ||
k= | ||
| 3cosα |
| 1 | 1 | h√1+3cos2α | ||||
PΔBCS= | *x*k= | x* | ||||
| 2 | 2 | 3cosα |
| 1 | h√1+3cos2α | a*h | |||
x* | = | ⇔ | |||
| 2 | 3cosα | 6cosα |
| a | ||
x= | ||
| √1+3cos2α |
| 2a2 | ||
a2= | *(1−cosβ) | |
| 1+3cos2α |
| 1−3cos2α | ||
cosβ= | ||
| 2 |