matematykaszkolna.pl
Wyznacz dziedzinę i miejsca zerowe f-ji. Azul: hej mam problem z dwoma zadankami 1.Wyznacz dziedzinę i miejsca zerowe f−ji
 x2(x+3)(x2−1) 
f(x)=

 2x2+5x−3 
z dziedziną sobie poradziłam, wzięłam mianownik do kwadratu wyliczyłam i mam dziedzinę. Do miejsc zerowych muszę po prostu wyliczyć ułamek i spr jaki będzie x1 i x2 bądź x0 ale kompletnie nic mi nie wychodzi. Ma ktoś jakieś wskazówki jak to zrobić? 2.Wyznacz zbiór argumentów, dla których wartości f−ji f(x)=7(x3+x+2)(x−5)2 są niedodatnie. Tutaj zapisałam 7(x3+x+2)(x−5)2 <0 i mam wyliczyć najpierw 1cz potem drugą tzn oddzielnie 7(x3+x+2) a oddzielnie (x−5)2 bo z 2cz wych że x<5 I tu utknęłam bo nie wiem co dalej. w odpowiedzi mam x∊(−;−1> ∪ {5} i też nie rozumiem dlaczego w odpowiedzi jest 5 w klamerce a nie jako przedział.
19 mar 13:10
ICSP: x2(x+3)(x2 − 1) = 0 x2 = 0 v x + 3 = 0 v x2 − 1 = 0 x = 0 v x = −3 v x = −1 v x = 1 i uwzględnij to z dziedziną.
19 mar 13:12
Metis: 1) Dziedzina : 2x2+5x−3>0 Miejsca zerowe f(x)=0 ⇔ x2(x+3)(x2−1)=0 2) f(x)≤0 ⇔ 7(x3+x+2)(x−5)2≤0
19 mar 13:13
ICSP: 7(x3+x+2)(x−5)2 ≤ 0 // : 7 (x+1)(x2 − x + 2)(x − 5)2 ≤ 0 // : x2 − x + 2 (x+1)(x − 5)2 ≤ 0 x ∊ (− ; −1] ∪ {5}
19 mar 13:14
Aga1.: 1) dziedzina 2x2+5x−3>0
 1 
x∊(−3,

) taką masz dziedzinę?
 2 
 a 
Miejsca zerowe f(x)=0⇔x2(x+3)(x2−1)=0 (ułamek

=0⇔a=0 i b≠0)
 b 
x=0 v x=−3 v x=1 v x=−1 (które z tych liczb należą do dziedziny?)
19 mar 13:18
Azul: Aha czyli w takim ułamku miejsca zerowe jednak wyliczamy tylko z licznika i uwzględniamy z dziedziną. zawsze miałam problem z uwzględnieniem odpowiedzi z dziedziną i jak patrzę to x=−3 nie mieści się w dziedzinie.
 1 
x=−1 też, x=0 też. więc zostaje x=1 a dziedizna to D∊(−3;) ∪ (

; )
 2 
więc odp. (−3;) ∪ (1; ) i już widzę że się gdzieś kopnęłam bo odp to (−; −1), mógłbyś mi pokazać gdzie popełniłam błąd?
19 mar 13:20
Azul: dziedzina taka jaka mi wyszła mam w odp
19 mar 13:21
Azul: choć w Twojej odp. Aga1 jasno widzę że do dziedziny należy −1
19 mar 13:22
ICSP: Aga1 źle rozwiązałą nierówność. Dziedzina taka sama jak w odpowiedziach.
19 mar 13:29
Aga1.: Przepraszam, oczywiście źle podałam dziedzinę.
19 mar 13:32
Azul: ok sorki źle spojrzałam na odp do 1. dziedzinę mam ok a miejsce zerowe to x=1 nie x =−1 czyli dobrze uwzględniłam dziedzinę. Bardzo wam dziękuję za pomoc emotka
19 mar 13:34
prosta:
 1 
dziedzina D=(−,−3)∪(

.)
 2 
19 mar 13:45