logarytmy
Ireneusz: Oblicz log2360 wiedząc, że log220=a a log215=b
18 mar 22:49
Jack: podpowiedź :
360 = 20 * 15 + 4 * 15
18 mar 22:56
Jack: albo nie... wlasciwie
18 mar 22:59
Jack:
log220 = log2(4*5) = log24 + log25 = 2 + log25 = a ===>> log25 = a − 2
log215 = log2 (3*5) = log23 + log25 = b ===> log25 = b − log23
a − 2 = b − log23
log23 = b − a + 2
log2360 = log2(24 * 15) = log2 24 + log215 =
= log2(8*3) + b = log28 + log23 + b = 3 + b + log23 =
= 3 + b + b − a + 2 = 5 + 2b − a
18 mar 23:26
Eta:
log220=a ⇒ 2+log25=a ⇒ log25=a−2
log215= log23+log25=b ⇒ log23=b−a+2
log2360= log232*20*2= 2log23+log220+1 = 2(b−a+2)+a+1= 2b−a+5
19 mar 00:22