lim
szarlotka: oblicz lim (n−>∞) √5n (√3n+4 − √3n)
16 mar 16:21
Janek191:
Tam jest √5n i √3n czy √5 n i √3 n ?
16 mar 16:27
grzest: W tym przypadku postępujemy standardowo, przeksztacając wyrażenie w nawiasie przy pomocy wzoru:
16 mar 16:39
szarlotka: n tez pod pierwiastkiem
ok sprobuje, dziekuje
16 mar 16:52
grzest: Wynik:
limn−>∞ √5 n (√3 n+4−√3 n) = 2 √5/3.
16 mar 17:00
szarlotka: a co potem z tym dołem?
16 mar 17:30
Janek191:
| 3n + 4 − 3 n | | 4√5 n | |
an = √5 n* |
| = |
| = |
| √3 n + 4 + √3n | | √3n + 4 + √3n | |
więc
| 4√5 | | 2 √5 | |
lim an = |
| = |
| |
| 2 √3 | | √3 | |
n→
∞
16 mar 18:12