1 | x+1 | |||
∫ | *ln( | )dx | ||
√x | x−1 |
x+1 | x+1 | 1 | 1 | |||||
∫ = 2 ∫ (√x)' ln | dx = 2 √x ln | − 2 ∫ √x( | − | ) dx | ||||
x−1 | x−1 | x+1 | x−1 |
1 | 1 | 1 | 1 | |||||
∫ √x( | − | ) dx = 2 ∫ t2( | − | ) dt | ||||
x+1 | x−1 | t2+1 | t2−1 |
2 | 1 | 1 | ||||
= − ∫ ( | + | − | ) dt | |||
t2+1 | t−1 | t+1 |
1 | 1 | 1 | 1 | |||||
2 t2 ( | − | ) = | + | = | ||||
t2+1 | t2−1 | t2+1 | t2−1 |
1 | 1/2 | 1/2 | ||||
= | + | − | ||||
t2+1 | 1+t | t−1 |
x+1 | √x+1 | |||
Ostateczny wynik = 2 √x log | + 4 arctg √x − 2 log | |||
x−1 | √x−1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |