cos10x+1 | ||
cos25x= | ||
2 |
cos10x+1 | 1 | 1 | 1 | |||||
∫cos25xdx=∫ | dx= | (∫cos10xdx+∫dx)= | sin10x+ | x+C | ||||
2 | 2 | 20 | 2 |
1 | 1 | 1 | ||||
∫x*e3xdx=|du=e3x, u= | e3x, v=x, dv=1|= | e3x*x−∫ | e3x= | |||
3 | 3 | 3 |
1 | 1 | |||
= | e3x*x− | e3x+C | ||
3 | 9 |
1 | 1 | |||
∫sin8x*cosxdx=|sinx=t, dt=cosxdx|=∫t8dt= | t9+C= | sin9x+C | ||
9 | 9 |
x | ||
∫ | dx=|√x2+4=t, t2=x2+4, tdt=xdx|=∫dt=t+C=√x2+4+C | |
√x2+4 |