√n+3 +2 | ||
lim | ||
√4n−1 |
n+3 | 2 | 1 | 1 | |||||
= limn−>∞( √ | + | ) = √ | +0 = | . | ||||
4n−1 | √4n−1 | 4 | 2 |
√n+3+2 | √n2(1/n + 3/n2 + 2 | |||
lim | = lim | = | ||
√4n−1 | √n2(4/n−1/n2) |
n*√1/n+3/n2+2 | n(√1/n+3/n2 +2/n | |||
lim | = lim | = | ||
n*√4/n−1/n2 | n(√4/n−1/n2) |
√1/n+3/n2+2/n | ||
lim | ||
√4/n−1/n2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |