6 | 15 | |||
an=3n−√9n2+6n−15=3n−√n2(9+ | − | )=3n−n √9=3n−3n=0 | ||
n | n2 |
2 | 2 | |||
an=√n2+2n−√n2−2n=√n2(1+ | )−√n2(1− | )=n √1−n √1=0 | ||
n | n |
(−0,9)n | (−0,9)n | ||||||||||||
an= | = | ||||||||||||
3n+5 |
|
9 n2 − (9 n2 + 6 n −15) | 15 −6n | |||
an = | = | |||
3 n +√9 n2 +6 n −15 | 3n + √9 n2 +6 n −15 |
15n − 6 | ||
an = | ||
3 + √9 + 6n − 15n2 |
0 − 6 | ||
lim an = | = − 1 | |
3 + 3 |
a2 − b2 | ||
Stosujemy wzór : a − b = | ||
a + b |