matematykaszkolna.pl
Wartość funkcji logarytmicznej dla argumentu x_0 Jagienka: Oblicz wartość funkcji f(x)=2x+2 dla argumentu x0 x0 = log24 2 + log4 3 + log2 4 3 Pilnie potrzebuję odpowiedzi, z góry bardzo dziękuje emotka
6 mar 20:04
5-latek : Wiesz ja bym to rozwalil logarytmami dziesiatnymi le loga rytmy log43 log42=0,5 wiec log242= (log42)2=0,25
 log3  0,48 
teraz log43=

=

=0,8
 log4 0,6 
wiec llog243=(log43)2= 0,64 wiec wyraźnie pod pierwiastkiem będzie rowne 0,25+0,64+0,8= 1,69 to 1,69= 1,3 Teraz 21,3+2= 23,3 dalej już Ty
6 mar 21:13
5-latek : Może ktoś pokaze inaczej
6 mar 21:15
Godzio: Jak jest jakieś wyrażenie pod pierwiastkiem to trzeba szukać wzoru skróconego mnożenia emotka
 1 
log42 =

 2 
log422 + 2 * log42 * log43 + log423 = (log42 + log43)2 = log426
 1 
x0 = log46 = log226 =

log26 = log26
 2 
f(x0) = 2log26 + 2 = 2log26 * 22 = 6 * 4 = 46
6 mar 21:20
5-latek : Czesc Godzio emotka Zaraz to sobie zapisze tez Dzieki emotka
6 mar 21:23
Godzio: Hejo emotka
6 mar 21:27