matematykaszkolna.pl
równania różniczkowe bart23mannn: Znaleźć równanie różniczkowe opisujące rodzinę krzywych (C1, C2 − stałe): y=C1(x−C2)2.
6 mar 16:25
jc: y = a(x−b)2 y' = 2 a (x−b) y'' = 2 a (y')2 = 4 a2 (x−b)2 = 2 y y'' czyli: 2 y y'' = (y')2
6 mar 16:35
bart23mannn: nie jest to najpierw pochodna z tej funkcji a potem podstawianie pewnej stałej, w tym wypadku C?
6 mar 16:41
jc: Nie rozumiem pytania. Dla wygody użyłem a, b, zamiast C1, C2.
6 mar 16:57
bart23mannn: dobra ... a to: t+y+ty'=0. Jak to zrobić?
6 mar 17:01
bart23mannn: sorka pomyłka.... ten przykład: x3=C(x2−y2)
6 mar 17:04
jc: Np. tak
 x3 
C =

 x2−y2 
 x3 
(

)' = C' = 0
 x2−y2 
6 mar 17:09