|ΔKLM− Δrównoboczny o boku 2r
W ΔAPK:
α=30o
| r | ||
tgα= | ||
| AP |
| r | ||
tg(30o)= | ||
| AP |
| √3 | r | ||
= | |||
| 3 | AP |
| 3r | ||
|AP|= | ||
| √3 |
| a | ||
|AP|=r√3 i |AP|= | −r⇔ | |
| 2 |
| a | |
−r=r√3 | |
| 2 |
| a | |
=r√3+r | |
| 2 |
| a | ||
r*(√3+1)= | /*(√3−1) | |
| 2 |
| a | ||
r*(3−1)= | *(√3−1) /:2 | |
| 2 |
| a | ||
r= | *(√3−1) | |
| 4 |
| a | ||
Po=π*( | *(√3−1))2 | |
| 4 |
| a2 | ||
Ps=3* | *(4−2√3) | |
| 16 |
| 3a2 | ||
Ps= | *(2−√3) | |
| 8 |
| a2√3 | ||
PΔABC= | ||
| 4 |
| Ps | 3a2 | 4 | √3*(2−√3) | ||||
= | *(2−√3)* | = | |||||
| PΔ | 8 | a2√3 | 2 |
a=2r+2r√3 = 2r(√3+1) to a2= 4r2(4+2√3 =8r2(2+√3
| a2√3 | ||
PΔ= | ⇒ PΔ= 2r2(2√3+3}) , Ps= 3πr2 | |
| 4 |
| Ps | 3π | ||
= | |||
| PΔ | 2(2√3+3) |