| −1 | √3 | |||
z4= | + | *i | ||
| 2 | 2 |
| −1 | √3 | |||
| | + | *i|=1 | ||
| 2 | 2 |
| 1 | ||
cosφ=− | ||
| 2 |
| √3 | ||
sinφ= | ||
| 2 |
| π | 2π | |||
φ=π− | = | |||
| 3 | 3 |
|
| |||||||||||||||
zk=4√1*(cos | +i sin | ) gdzie k=0,1,2,3 | ||||||||||||||
| 4 | 4 |
| 1 | 1 | |||
z4 = − | + i | √3 | ||
| 2 | 2 |
| 1 | 1 | |||
|− | + i | √3| = 1 | ||
| 2 | 2 |
| 1 | 1 | 2 | ||||
arg ( − | + i | √3) = | π | |||
| 2 | 2 | 3 |
| 2 | 2 | |||
w0 = cos | π + isin | π | ||
| 12 | 12 |
| 1 | 1 | |||
w0 = cos | π + isin | π | ||
| 6 | 6 |
| 8 | 8 | |||
w1 = cos | π + isin | π | ||
| 12 | 12 |
| 2 | 2 | |||
w1 = cos | π + isin | π | ||
| 3 | 3 |
| 14 | 14 | |||
w2 = cos | π + isin | π | ||
| 12 | 12 |
| 7 | 7 | |||
w2 = cos | π + isin | π | ||
| 6 | 6 |
| 20 | 20 | |||
w3 = cos | π + isin | π | ||
| 12 | 12 |
| 5 | 5 | |||
w3 = cos | π + isin | π | ||
| 3 | 3 |
| π | ||
Jeszcze ostatnia kwestia, dla | łatwo odczytać wartości z tablic, ale dla takich wartości | |
| 6 |
| 7π | ||
jak | już gorzej czy w takim razie aby powyliczać dokładne wartości sinusów i | |
| 6 |
| 7π | π | ||
=π+ | i wzory redukcyjne | ||
| 6 | 6 |