| lim | n | |
| n→∞ | (n+1)! |
| 1 | n | n! | ||||
Zatem | ≤ | ≤ | ||||
| (n+1)! | (n+1)! | (n+1)! |
| 1 | ||
lim (n+1)! = +∞ → lim | = 0 | |
| (n+1)! |
| n! | n! | 1 | |||
= | = | ||||
| (n+1)! | n!*(n+1) | n+1 |
| n! | 1 | |||
lim | = lim | = 0 | ||
| (n+1)! | n+1 |
| 1 | n | n! | ||||
Ponieważ | ≤ | ≤ | ||||
| (n+1)! | (n+1)! | (n+1)! |
| 1 | n! | |||
lim | = 0, lim | = 0 | ||
| (n+1)! | (n+1)! |
| n | ||
lim | = 0 | |
| (n+1)! |