lim | n | |
n→∞ | (n+1)! |
1 | n | n! | ||||
Zatem | ≤ | ≤ | ||||
(n+1)! | (n+1)! | (n+1)! |
1 | ||
lim (n+1)! = +∞ → lim | = 0 | |
(n+1)! |
n! | n! | 1 | |||
= | = | ||||
(n+1)! | n!*(n+1) | n+1 |
n! | 1 | |||
lim | = lim | = 0 | ||
(n+1)! | n+1 |
1 | n | n! | ||||
Ponieważ | ≤ | ≤ | ||||
(n+1)! | (n+1)! | (n+1)! |
1 | n! | |||
lim | = 0, lim | = 0 | ||
(n+1)! | (n+1)! |
n | ||
lim | = 0 | |
(n+1)! |