3 | ||
taaa, tyle że pochodna √3x+2 to | i robi się jeszcze gorzej.... | |
2√3x+2 |
t2 − 2 | ||
t2 = 3x + 2 ⇒ x = | ||
3 |
2tdt | ||
2tdt = 3 dx ⇒ dx = | ||
3 |
t2 − 2 | 2tdt | |||
∫x * √3x + 2 * dx = ∫ | * t * | |||
3 | 3 |
t | ||
to tak zaczęłam i potem mam coś − ∫ | dt, gdyby nie to t w liczniku to byłby arctgt, a | |
t2+1 |
x2 | 1 | 3x2+2x−2x | ||||
∫x√3x+2dx= | √3x+2− | ∫ | dx | |||
2 | 4 | √3x+2 |
x2 | 1 | 1 | x | |||||
∫x√3x+2dx= | √3x+2− | ∫x√3x+2dx+ | ∫ | dx | ||||
2 | 4 | 2 | √3x+2 |
5 | x2 | 1 | x | ||||
∫x√3x+2dx= | √3x+2+ | ∫ | dx | ||||
4 | 2 | 2 | √3x+2 |
x | 2 | 2 | ||||
∫ | dx= | x√3x+2− | ∫√3x+2dx | |||
√3x+2 | 3 | 3 |
x | 2 | x | 4 | dx | ||||||
∫ | dx= | x√3x+2−2∫ | − | ∫ | ||||||
√3x+2 | 3 | √3x+2 | 3 | √3x+2 |
x | 2 | 4 | dx | |||||
3∫ | dx= | x√3x+2− | ∫ | |||||
√3x+2 | 3 | 3 | √3x+2 |
x | 2 | 8 | ||||
3∫ | dx= | x√3x+2− | √3x+2 | |||
√3x+2 | 3 | 9 |
x | 2 | 8 | ||||
∫ | dx= | x√3x+2− | √3x+2 | |||
√3x+2 | 9 | 27 |
5 | x2 | 1 | 4 | ||||
∫x√3x+2dx= | √3x+2+ | x√3x+2− | √3x+2 | ||||
4 | 2 | 9 | 27 |
2 | 4 | 16 | ||||
∫x√3x+2dx= | x2√3x+2+ | x√3x+2− | √3x+2+C | |||
5 | 45 | 135 |
1 | ||
∫x√3x+2dx= | (54x2+12x−16)√3x+2+C | |
135 |
x2 | x3 | |||
∫xarctan(x2)dx= | arctan(x2)−∫ | dx | ||
2 | x4+1 |
x2 | 1 | 4x3 | ||||
∫xarctan(x2)dx= | arctan(x2)− | ∫ | dx | |||
2 | 4 | x4+1 |
x2 | 1 | |||
∫xarctan(x2)dx= | arctan(x2)− | ln|x4+1|+C | ||
2 | 4 |