n2(1+n)2 | ||
13+23+33+...+n3= | =(1+2+3+...+n)2 | |
4 |
n(n+1) | n2(n+1)2 | |||
1+2+3+..+n= | ⇒ (1+2+3+...+n)2= | |||
2 | 4 |
1*22 | ||
dla n=1 L=1 , P= | =1 | |
4 |
k2(k+1)2 | ||
n=k 13+23+...+k3= | ||
4 |
(k+1)2(k+2)2 | ||
13+23+...+k3+(k+1)3= | ||
4 |
k2(k+1)2 | (k+1)2*[k2+4(k+1)] | |||
L=13+23+... +k3+(k+1)3 = | +(k+1)3= | = | ||
4 | 4 |
(k+1)2(k2+4k+4) | (k+1)2(k+2)2 | |||
= | = | = P | ||
4 | 4 |