granicaaaaaaaaaa
19 latekkkkkkkkk: oblicz granice lim (pierwiastek 4n2+n+1−2n) plis co i jak z tym zrobic na jutro to mam
21 lut 18:25
yyhy: a nie
√4n2+n+1−2n
21 lut 18:26
yht:
a co pisze pod lim ? to ważne
21 lut 18:26
19 latekkkkkkkkk: n→∞
21 lut 18:26
19 latekkkkkkkkk: tak to co napisales as to wlasnie takie zada wogole nic nie kapuje
21 lut 18:27
yyhy: Skorzystaj ze wzoru
21 lut 18:28
yyhy: a potem (a−b)(a+b)=a2−b2
21 lut 18:29
19 latekkkkkkkkk: o kurwuniaaa dzieks ale i tak chyba odpuszcze bo wogole nie jarze
21 lut 18:31
Janek191:
| 4 n2 + n + 1 − 4n2 | |
an = √4 n2 + n + 1 − 2 n = |
| = |
| √4 n2 + n +1 + 2n | |
| n + 1 | |
= |
| ; dzielimy licznik i mianownik przez n |
| √4n2 + n +1 + 2n | |
| 1 + 1n | |
an = |
| |
| √4 + 1n + 1n2 + 2 | |
więc
| 1 + 0 | | 1 | |
lim an = |
| = |
| |
| √4 + 0 + 0 + 2 | | 4 | |
n→
∞
21 lut 18:32
yht:
niech a =
√4n2+n+1, b=2n
masz wzór a
2−b
2 = (a−b)(a+b)
dzieląc przez (a+b) masz
| a2−b2 | |
lim √4n2+n+1 − 2n = lim a−b = lim |
| = lim |
| a+b | |
| (√4n2+n+1)2−(2n)2 | | 4n2+n+1−4n2 | |
|
| = lim |
| = lim |
| √4n2+n+1+2n | | √4n2+n+1+2n | |
| n+1 | | n(1+1n) | |
|
| = lim |
| = lim |
| √4n2+n+1+2n | | √n2(4+1n+1n2) +n*2 | |
| n(1+1n | |
|
| = lim |
| n*√4+1n+1n2+n*2 | |
| n(1+1n) | | 1+1n | |
|
| = lim |
| = |
| n*(√4+1n+1n2+2) | | √4+1n+1n2+2 | |
| 1+0 | | 1 | | 1 | | 1 | |
|
| = |
| = |
| = |
| |
| √4+0+0+2 | | √4+2 | | 2+2 | | 4 | |
21 lut 18:36