| 1 | ||
an=an−1+ | 2n−2(n−1)−1 | |
| 2 |
| 1 | ||
an=an−1+ | 2n−2n+1 | |
| 2 |
| 1 | ||
∑n=1∞an=∑n=1∞an−1xn+∑n=1∞ | 2nxn−∑n=1∞2nxn+ | |
| 2 |
| 1 | 2x | x | |||
∑n=1∞an=x∑n=1∞an−1xn−1+ | −∑n=1∞2nxn+ | ||||
| 2 | 1−2x | 1−x |
| 1 | ||
∑n=0∞xn= | ||
| 1−x |
| d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
| dx | dx | 1−x |
| 1 | ||
∑n=0∞nxn−1=− | (−1) | |
| (1−x)2 |
| 1 | ||
∑n=1∞nxn−1= | ||
| (1−x)2 |
| x | ||
∑n=1∞nxn= | ||
| (1−x)2 |
| x | 2x | x | ||||
∑n=1∞an=x∑n=1∞an−1xn−1+ | − | + | ||||
| 1−2x | (1−x)2 | 1−x |
| x | −x2−x | |||
∑n=0∞an−1=x∑n=0∞anxn+ | + | |||
| 1−2x | (1−x)2 |
| x | −3x+1 | |||
A(x)(1−x)= | + | |||
| 1−2x | (1−x)2 |
| x | −3x+3−2 | |||
A(x)= | + | |||
| (1−2x)(1−x) | (1−x)3 |
| 1−x)−(1−2x) | 3 | 2 | ||||
A(x)= | + | − | ||||
| (1−2x)(1−x) | (1−x)2 | (1−x)3 |
| 1 | 1 | 3 | 2 | |||||
A(x)= | − | + | − | |||||
| 1−2x | 1−x | (1−x)2 | (1−x)3 |
| x | ||
∑n=0∞(n+1)xn+1= | ||
| (1−x)2 |
| 1 | ||
∑n=0∞(n+1)xn= | ||
| (1−x)2 |
| d | d | 1 | |||
(∑n=0∞(n+1)xn)= | ( | ) | |||
| dx | dx | (1−x)2 |
| 2 | ||
∑n=0∞n(n+1)xn−1=− | (−1) | |
| (1−x)3 |
| 2 | ||
∑n=1∞n(n+1)xn−1= | ||
| (1−x)3 |
| 2 | ||
∑n=0∞(n+1)(n+2)xn= | ||
| (1−x)3 |