mógłby ktoś pokazać jak wygląda całka po podstawieniu zmiennej t?
| 2x | ||
∫ | ||
| 4x−4 |
| dt | ||
= 1/ln2∫ | ||
| t2−4 |
| dt | ||
[2x=t , 2x ln(2) dx=dt, 2x dx= | ] | |
| ln(2) |
| 2x | 1 | 1 | 1 | 1 | ||||||
∫ | dx= | ∫ | dt= | ∫ | dt= | |||||
| (2x)2−4 | ln(2) | t2−4 | ln(2) | (t−2)*(t+2) |
| 1 | A | B | A*(t+2)+B*(t−2) | ||||
= | + | = | porównujesz liczniki | ||||
| (t−2)*(t+2) | t−2 | t+2 | (t2−4 |
| 1 | 1 | |||
A= | , B=− | |||
| 4 | 4 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
∫ | dt= | *[ | ∫ | dt− | ∫ | dt]= | |||||||
| ln(2) | t2−4 | ln(2) | 4 | t−2 | 4 | t+2 |
| 1 | ||
= | *[ln|t−2|−ln|t+2|]= | |
| 4ln(2) |
| 1 | t−2 | |||
= | *ln| | |= dokończ z podstawieniem. | ||
| 4ln(2) | t+2 |