| √2 | π | π | ||||
a)tgα, jeśli sinα−cosα= | i α e ( | ; | ) | |||
| 2 | 4 | 2 |
| π | π | |||
α ∊ ( | ; | ), czyli i sinus, i cosinus kąta α mają wartości dodatnie | ||
| 4 | 2 |
| √2 | ||
sinα=( | +cosα | |
| 2 |
| √2 | ||
( | +cosα)2+cos2α=1 | |
| 2 |
| 1 | |
+√2cosα+cos2α+cos2α=1 | |
| 2 |
| 1 | ||
2cos2α+√2cosα− | =0 | |
| 2 |
| −√2−2 | −√2+2 | |||
cosα= | <0 lub cosα= | |||
| 4 | 4 |
| 2−√2 | ||
cosα= | ||
| 4 |
| √2 | 2−√2 | 2√2+2−√2 | 2+√2 | |||||
sinα= | + | = | = | |||||
| 2 | 4 | 4 | 4 |
| 2+√2 | (2+√2)2 | 4+4√2+2 | ||||
tgα= | = | = | =3+2√2 | |||
| 2−√2 | 4−2 | 2 |
| tg(π/4)+tg(π/6) | ||
z tego tg α = tg 5π/12= tg(π/4+π/6) = | ||
| 1−tg(π/4) tg(π/6) |
| 1+(√3/3) | 3+√3 | (3+√3)2 | ||||
tg(π/4+π/6) = | = | = | = | |||
| 1−(√3/3) | 3−√3 | 6 |
| 9−6√3+3 | ||
tg α = tg 5π/12= | =2−√3 | |
| 6 |