x2+1 | ||
przekształciłam do √ | , ale nie wiem co dalej | |
x |
1 | ||
pod całką jest 1+ | ||
x2 |
√x2+1 | 1 | √x2+1 | ||||
=∫ | dx= | ∫ | 2xdx={x2=t, 2xdx=dt} | |||
x | 2 | x2 |
1 | √1+t | |||
= | ∫ | dt | ||
2 | t |
u2 | 1 | |||
dostaję ∫ | =∫1+∫ | tutaj rozkład na ułamki proste i chyba powinno wyjść | ||
u2−1 | u2−1 |
1 | ||
∫√1+ | dx | |
x2 |
1 | 1 | |||
√1+ | =t− | |||
x2 | x |
1 | t | 1 | ||||
1+ | =t2−2 | + | ||||
x2 | x | x2 |
t | ||
1=t2−2 | ||
x |
t | ||
2 | =t2−1 | |
x |
1 | t2−1 | ||
= | |||
x | 2t |
2t | ||
x= | ||
t2−1 |
2(t2−1)−2t*2t | ||
dx= | dt | |
(t2−1)2 |
−2t2−2 | ||
dx= | dt | |
(t2−1)2 |
1 | t2−1 | 2t2−t2+1 | ||||
t− | =t− | = | ||||
x | 2t | 2t |
1 | t2+1 | |||
t− | = | |||
x | 2t |
t2+1 | t2+1 | ||
−2∫ | dt | ||
2t | (t2−1)2 |
(t2+1)2 | ||
−∫ | dt | |
t(t2−1)2 |
(t2−1)2+4t2 | ||
−∫ | dt | |
t(t2−1)2 |
dt | 4t | |||
=−(∫ | +∫ | dt) | ||
t | (t2−1)2 |
2 | ||
=−(ln|t|− | )+C | |
t2−1 |
2 | ||
= | −ln|t|+C | |
t2−1 |
2t | 1 | ||
= | −ln|t|+C | ||
t2−1 | t |
1 | 1 | 1 | ||||||||||||||||
=x | −ln| | +√1+ | |+C | |||||||||||||||
| x | x2 |
| |||||||||||||||||
=x | |||||||||||||||||
|
1 | 1 | 1 | ||||
=−(1−x√1+ | )−ln| | +√1+ | |+C | |||
x2 | x | x2 |
1 | 1 | 1 | ||||
=−1+x√1+ | −ln| | +√1+ | |+C | |||
x2 | x | x2 |
1 | 1 | 1 | ||||
=x√1+ | −ln| | +√1+ | |+C | |||
x2 | x | x2 |