x + 1 | ||
1. Znajdź pochodną funkcji f(x)= ( | )2 | |
x−1 |
1 | 1 | 1 | ||||
2. Znajdź ekstrema funkcji f(x)= | * x3 − | * x2 − 2x − | i określić ich | |||
3 | 2 | 3 |
x3 | ||
3.Znajdź funkcje pierwotną F(x) = ∫ f(x)dx ,jeśli f(x)= | . Podstawienie 1+x2=t | |
√1+x3 |
sinx dx | ||
4. Oblicz całkę ∫ | . Podstawienie 2 + cosx=t | |
2+cosx |
2 | 2 | 4 (x+1) | ||||
f`(x)=−2(1+ | ) | =− | ||||
x−1 | (x−1)2 | (x−1)3 |
5 | ||
2.max f(−1)= | ||
6 |
11 | ||
min f(2)=− | ||
3 |
x | 3x2 | 2 | 2 | ||||
∫ | dx= | x√1+x3− | ∫√1+x3dx | ||||
3 | √1+x3 | 3 | 3 |
x3 | 2 | 2 | 1+x3 | |||||
∫ | = | x√1+x3− | ∫ | dx | ||||
√1+x3dx | 3 | 3 | √1+x3 |
1 | x3 | 2 | 2 | dx | |||||
∫ | = | x√1+x3− | ∫ | ||||||
3 | √1+x3dx | 3 | 3 | √1+x3 |
x3 | dx | |||
∫ | =2x√1+x3−2∫ | |||
√1+x3dx | √1+x3 |
dx | dx | |||
∫ | =∫ | |||
√1+x3 | √(1+x)(1−x+x2) |
2t | dt | |||
∫ | dt=2∫ | |||
√t2(1−(t2−1)+(t2−1)2) | √t4−3t2+3 |