| 2x | ||
f(x) = | ||
| arctgx |
| 2x | 0 | |||
limx→0− | = [ | ] stosuję regułę de L'Hospitala i mam | ||
| arctgx | 0 |
| 2 | ||||||||
limx→0− | = limx→0− 2 +2x2 = [2+ 2*02] = 2 | |||||||
|
| ∞ | |||||||||
limx→+−∞ | = limx→+−∞ U {2x}{xarctgx} = [ | ] stosuję regułę de | ||||||||
| x | ∞ |
| 2 | 2 | ||||||||||||
limx→+−∞ | = [ | ] =+−0 | |||||||||||
| +−∞ |
| 2x | +−∞ | |||||||||
limx→+−∞ | = [ | ] = +−∞ | ||||||||
| arctgx |
|
| f(x) | 2 | 2 | ||||||||||
a= | = | → | gdu x→∞ | |||||||||
| x | arctgx |
|
| 2x | 1 | 2 | ||||||||||
= | * | = | ![]() | ||||||||||
| x | arctgx | x | arctgx |
| 2 | |||||||||||
gdy x→−∞ to będzie | ? | ||||||||||
|
Policz b
| 2x | 4x | 2πx − 4xarctgx | ||||
limx→∞ | − | = limx→∞ | = | |||
| arctgx | π | πarctgx |
| 2x(π−2arctgx) | ∞ | |||||||||
= limx→∞ | = [ | ] = ∞ | ||||||||
| πarctgx |
|
| 4 | ||
tak? i wtedy asymptota pionowa y= | x | |
| π |