5 | ||
log (przy podstawie z X) z (x2− | x+1) −2<0 | |
2 |
2 | ||
Czy to jest dobry wynik: x należy do ( | ;1) u (1;+ nieskończonosći) ? | |
5 |
5 | ||
logx(x2− | x+1)−2<0 taka nierówność? | |
2 |
1 | ||
logx(x−0,5)<−logx(x−2) ⇒ logx(x−0,5)<logx | ||
x−2 |
5 | ||
1)(x2− | x+1)>0 i x>0 i x≠1⇔ | |
2 |
1 | ||
x∊(0, | )∪(2,∞) | |
2 |
1 | ||
2) x∊(0, | ) wtedy : | |
2 |
5 | ||
logx(x2− | x+1)<2⇔ | |
2 |
5 | ||
logx(x2− | x+1)<logx(x2)⇔ | |
2 |
5 | ||
x2− | x+1>x2⇔ | |
2 |
5 | ||
− | x+1>0 | |
2 |
5 | ||
− | x>−1 | |
2 |
2 | 1 | |||
x< | i x∊(0, | )⇔ | ||
5 | 2 |
2 | ||
x∊(0, | ) | |
5 |
5 | ||
logx(x2− | x+1)<logx(x2)⇔ | |
2 |
5 | ||
x2− | x+1<x2⇔ | |
2 |
2 | ||
x> | i x>2⇔ | |
5 |
2 | ||
x∊(0, | )∪(2,∞) | |
5 |