| ln2x−3 | ||
∫ | ||
| x(−2ln2x + 5lnx − 3) |
| 1 | ||
Po podstawieniu t = lnx dt = | dx xdt = dx | |
| x |
| t2 − 3 | ||
∫ | ||
| −2t2 + 5t − 3 |
| 1 | −2t2+6 | −2t2+5t−3−5t+9 | ||||
− | ∫ | dt= | dt | |||
| 2 | −2t2+5t−3 | −(2t−3)((t−1)) |
| 1 | 5t−9 | |||
− | (∫dt+∫ | dt) | ||
| 2 | (2t−3)((t−1) |
| 5t−9 | A | B | |||
= | + | ||||
| (2t−3)((t−1) | 2t−3 | t−1 |
| 5t−9 | 3 | 2 | 4 | |||
=− | + | |||||
| (2t−3)((t−1) | 2 | 2t−3 | t−1 |
| 1 | 3 | |||
− | (t+4ln|t−1|− | ln|2t−3|)+C | ||
| 2 | 2 |