1 | ||
0∫1/2 | dx = ... | |
√1−x2 |
1 | ||
∫ | dx = arcsinx + C | |
√1−x2 |
1 | π | |||
... 0[arcsinx]1/2 = arcsin | − arcsin0 = | |||
2 | 6 |
x | ||
0∫2 | dx = ... | |
x2+4 |
x | 1 | 1 | 1 | |||||
∫ | dx = | ∫ | dt = | ln|x2+4| + C | ||||
x2+4 | 2 | t | 2 |
1 | 1 | 1 | ||||
... 0[ | ln|x2+4|]2 = | ln8 − | ln4 | |||
2 | 2 | 2 |
π | π | |||
... 0[(x+1)sinx + cosx]π/2 = | + 1 − 1 = | |||
2 | 2 |
cosxdx | ||
0∫π/2 | = ... | |
√1+sinx |
cosxdx | 1 | |||
∫ | = ∫ | dt = ∫t−1/2dt = 2√1+six + C | ||
√1+sinx | √t |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |