−x | ||
y' = | ||
√4−x2 |
x2 | ||
∫√1+ | dx = sprowadzam do wspólnego mianownika i otrzymuję = | |
4−x2 |
1 | x | |||
2∫ | dx = 2arcsin | + C | ||
√4−x2 | 2 |
x | 1 | 1 | ||||
... −2[2arcsin | ]2 = 2arcsin | − [2arcsin− | ] = | |||
2 | 2 | 2 |
1 | 1 | 1 | ||||
2arcsin | + 2arcsin | = 4arcsin | ||||
2 | 2 | 2 |
1 | π | |||
4arcsin | = 4* | = 2/3π | ||
2 | 6 |
x | ||
[2arcsin( | )]2−2 = 2arcsin(1) − 2arcsin(−1) = | |
2 |
π | −π | |||
2 | −2 | = π−(−π) = 2π | ||
2 | 2 |
1 | ||
y = ln(1−x2) gdzie x∊<0, | > | |
2 |
−2x | ||
y'= | ||
1−x2 |
4x2 | x4+2x2+1 | |||
∫√1+ | dx = ∫√ | dx = | ||
(1−x2)2 | (1−x2)2 |
(x2+1)2 | x2+1 | |||
∫√ | dx = ∫ | dx = | ||
(1−x2)2 | 1−x2 |
1 | 1 | |||
−∫dx + 2∫ | dx = −∫dx − 2∫ | dx = | ||
1−x2 | x2 −1 |
x−1 | ||
−x − 2ln| | | + C | |
x+1 |
x−1 | −1/2 | |||
0[−x − 2ln| | |]1/2 = −1/2 −2ln| | | − [0 − 2ln|−1|] = | ||
x+1 | 3/2 |
1 | ||
−1/2 − 2ln | ||
3 |