| −x | ||
y' = | ||
| √4−x2 |
| x2 | ||
∫√1+ | dx = sprowadzam do wspólnego mianownika i otrzymuję = | |
| 4−x2 |
| 1 | x | |||
2∫ | dx = 2arcsin | + C | ||
| √4−x2 | 2 |
| x | 1 | 1 | ||||
... −2[2arcsin | ]2 = 2arcsin | − [2arcsin− | ] = | |||
| 2 | 2 | 2 |
| 1 | 1 | 1 | ||||
2arcsin | + 2arcsin | = 4arcsin | ||||
| 2 | 2 | 2 |
| 1 | π | |||
4arcsin | = 4* | = 2/3π | ||
| 2 | 6 |
| x | ||
[2arcsin( | )]2−2 = 2arcsin(1) − 2arcsin(−1) = | |
| 2 |
| π | −π | |||
2 | −2 | = π−(−π) = 2π | ||
| 2 | 2 |
| 1 | ||
y = ln(1−x2) gdzie x∊<0, | > | |
| 2 |
| −2x | ||
y'= | ||
| 1−x2 |
| 4x2 | x4+2x2+1 | |||
∫√1+ | dx = ∫√ | dx = | ||
| (1−x2)2 | (1−x2)2 |
| (x2+1)2 | x2+1 | |||
∫√ | dx = ∫ | dx = | ||
| (1−x2)2 | 1−x2 |
| 1 | 1 | |||
−∫dx + 2∫ | dx = −∫dx − 2∫ | dx = | ||
| 1−x2 | x2 −1 |
| x−1 | ||
−x − 2ln| | | + C | |
| x+1 |
| x−1 | −1/2 | |||
0[−x − 2ln| | |]1/2 = −1/2 −2ln| | | − [0 − 2ln|−1|] = | ||
| x+1 | 3/2 |
| 1 | ||
−1/2 − 2ln | ||
| 3 |