qqq
witek: Całka sprawdzenie
| 1 | | 1 | | 1 | |
−3∫0 |
| dx =−3∫1 |
| dx + 1∫0 |
| dx = |
| x2+3x | | x2+3x | | x2+3x | |
| 1 | | 1 | |
limε→−3+(ε∫1 |
| dx) + limε→0−( 1∫ε |
| dx) |
| x2+3x | | x2+3x | |
x
2+3x ≠ 0
x≠0 i x≠−3
| 1 | | 1 | |
I1 = ∫ |
| dx =∫ |
| dx |
| x2+3x | | x(x+3) | |
1 = Ax + Bx + 3B
0 = A + B
1 = 3B ⇒ B = 1/3 czyli A = −1/3
| 1 | | 1 | |
−1/3∫ |
| ∫dx + 1/3∫ |
| dx = −1/3ln|x+3| + 1/3ln|x| + C |
| x+3 | | x | |
ε[−1/3ln|x+3| + 1/3ln|x| ]
1 = [−1/3ln4 + 1/3ln1] − [−1/3ln|ε+3| + 1/3ln|ε|] =
−1/3ln4 + 1/3ln|ε+3| − 1/3ln|ε|
lim
ε→−3+(−1/3ln4 + 1/3ln|ε+3| − 1/3ln|ε|) = −
∞
[ 1/3ln4 + 1/3ln0 − 1/3ln3 ] = [1/3ln4 + (−
∞) − 1/3ln3 ] = [−
∞]
odp. całka rozbieżna