| sin3x | ||
q= | =sinx | |
| sin2x |
| a1 | sin2x | |||
S= | = | |||
| 1−q | 1−sinx |
| sin2x | |
=1+sinx | |
| 1−sinx |
| 1 | ||
sin2x= | ||
| 2 |
| 1 | 1 | |||
sin x = − | lub sin x = | |||
| √2 | √2 |
| √2 | √2 | |||
no i z tego sinx= | v sinx= − | |||
| 2 | 2 |
| √π | √π | |||
xo= | v xo=− | |||
| 4 | 4 |
| √π | √π | |||
x= | +2kπ v x= − | +2kπ | ||
| 4 | 4 |
| π | ||
i co teraz? Bo potem sprawdzam zbieżność i wychodzi, że tylko x= | pasuję, a wynik to | |
| 4 |
| π | π | π | ||||
x= | +k | . No i skąd to k | ? | |||
| 4 | 2 | 2 |
| π | π | |||
xo= | v xo=− | |||
| 4 | 4 |
| π | π | |||
x= | +2kπ v x=− | +2kπ | ||
| 4 | 4 |
| √2 | √2 | |||
sin x = | lub sinx = − | |||
| 2 | 2 |
| π | 3 | |||
x = | + 2k π lub x = | π + 2kπ | ||
| 4 | 4 |
| √2 | ||
sin x = | ||
| 2 |
| π | 3 | |||
x = | + 2kπ lub x = | π + 2kπ | ||
| 4 | 4 |
| √2 | ||
sin x = − | ||
| 2 |
| π | 5 | |||
x = − | + 2kπ lub x = | π + 2kπ | ||
| 4 | 4 |
| π | π | 3 | 5 | |||||
− | , | , | π , | π | ||||
| 4 | 4 | 4 | 4 |
| 2π | π | |||
widac ze powstaja poprzez dodanie | czyli | |||
| 4 | 2 |
| π | π | kπ | |||
i musimy dodawac krotnosci | czyli inaczej | ||||
| 4 | 2 | 2 |
| π | kπ | ||
+ | |||
| 4 | 2 |
bo Ty napisales tylko 2 wyniki mozliwe, a powinny byc 4
Dziękuję bardzo za pomoc!