| 1 | ||
∫e4 x (cos(8x)dx= | e4 x cos(8 x)+2∫e4 x sin(8 x)dx | |
| 4 |
| 1 | 1 | |||
∫ e4 x cos(8 x) dx= | e4 x sin(8 x)+ | e4 xcos(8 x)−4 ∫e4 x cos(8 x)dx | ||
| 2 | 4 |
| 1 | 1 | |||
5∫ e4 x cos(8 x) dx= | e4 x sin(8 x)+ | e4 xcos(8 x) | ||
| 2 | 4 |
| 1 | 1 | 1 | ||||
∫ e4 x cos(8 x) dx= | ( | e4 x sin(8 x)+ | e4 xcos(8 x))= | |||
| 5 | 2 | 4 |
| 1 | ||
= | e4 x (2sin(8 x)+cos(8 x)) | |
| 20 |