| cosx2*2x | ||
czyli | = 1 | |
| 1 |
| cos3x | 0 | −3sin2x | −3 | ||||
= | = z del l'H = | = | =3 | ||||
| cosx | 0 | −sinx | −1 |
| arctg3x | |
=del l'H= | |
| arctg5x |
| 3 | 1+25x2 | 3 | ||||||||||||||
= | * | = | |||||||||||||||
| 1+9x2 | 5 | 5 |
| x−arctgx |
| x2 | 1 | |||||||||||||
= znow nasz H= | = | * | = skracam co sie | |||||||||||||
| x3 | 3x2 | 1+x2 | 3x2 |
| 1 | 1 | |||
da i zostaje = | = | |||
| 3+3x2 | 3 |
| sinx2 | cosx2*2*x | 1*2*0 | ||||
lim | = lim | = | = 0 | |||
| x | 1 | 1 |
| 4*cos3x − 3*cosx | ||
lim | = lim(4*cos2x − 3) = 4*0 − 3 = −3 | |
| cosx |
| −1 + 1/x | −1 + 1 | |||
lim | = | = 0 | ||
| −π*sin(π*x) | −π*(−1) |
| 3*1/(1 + 9*x2) | 3 | 1 + 25*x2 | 3 | |||||
lim | = lim | * | = | |||||
| 5*1/(1 + 25*x2) | 1 + 9*x2 | 5 | 5 |
| 1/(1 + x2) | 3*x2 + 3*x4 − 1 | −1 | ||||
lim(1 − | ) = lim | = | = −∞ | |||
| 3*x2 | 3*x2 + 3*x4 | 0 |
| 1 − 1/(1+x2) | 1 + x2 − 1 | x2 | ||||
lim | = lim | = lim | = | |||
| 3*x2 | 3*x2*(1 + x2) | 3*x2 + 3*x4 |
| 1 | 1 | |||
lim | = | |||
| 3 + 3*x2 | 3 |
| −1 | ||
Hehe ciezkie te granice xD Widzisz up ze masz | wiec nie da sie dzielic przez 0. | |
| 0 |