dt | ||
jeśli podstawisz: ex = t , to: exdx = dt ⇒ dx = | i masz całkę: | |
ex |
1 | ||
∫ | arctgtdt ... i co dalej ? | |
t2 |
1 | ||
arctgt=f | =f' t−2=g' −t−1=g | |
t2+1) |
arctgt | 1 | |||
∫t−2arctgtdt=− | +∫ | |||
t | t(t2+1) |
1 | 1+t2 | t2 | ||||
∫ | = ∫ | −∫ | =lnt−12ln(t2+1) | |||
t(t2+1) | t(t2+1) | t(t2+1) |
arctgex | ||
∫e−xarctgexdx=− | +ln(ex)− 12ln(e2x+1)+C ![]() | |
ex |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |