k: y= −x+6 B, A∊k to A(0,6) i B( 6,0)
P∊l to: l : y= a(x−4)+2 ⇒ l: y=ax−4a+2 , b= −4a+2
z treści zadania b>2 i b<6 ⇒ −4a+2>2 i −4a+2<6 ⇒ a∊(−1,0)
h2=4 i h1=2
| 1 | 1 | |||
P(ADP)= | *4*|AD| , P(DBP)= | *2*|BD| | ||
| 2 | 2 |
| 4a−2 | 2 | 2 | ||||
ax−4a+2=0 ⇒ x= | = 4− | , D(4− | , 0) | |||
| a | a | a |
| 2 | a+1 | |||
|BD|= |4− | −6| = 2| | | | ||
| a | a |
| a+1 | ||
to z (**) 8|a+1|+2| | |=6 /:2 | |
| a |
| a+1 | ||
i dla a∊(−1,0) 4(a+1) − | =3 /*a ⇒ 4a2+4a−a−1=3a ⇒ 4a2−1=0 | |
| a |
| 1 | 1 | 1 | ||||
(a− | )(a+ | )=0 i a∊(−1,0) to a= − | ||||
| 2 | 2 | 2 |
| 1 | ||
zatem prosta L ma równanie: y= − | (x−4)+2 | |
| 2 |
| 1 | ||
l: y=− | x+4 | |
| 2 |