2√2 | ||
W trójkącie ostrokątnym dane są: a=2, b=1, sinalpha = | . Oblicz c. | |
3 |
2√2 | ||
sinα= | ||
3 |
a | b | ||
= | |||
sinα | sinβ |
b*sinα | 2√2 | √2 | ||||
sinβ= | = | /2= | ||||
a | 3 | 3 |
√7 | ||
cosβ=+√1−sin2β=√1−(2/9)= √7/9= | (trójkat ostrokatny | |
3 |
1 | ||
cosα=+√1−sin2α=√1−(8/9)=√1/9= | ||
3 |
sinα | 2√2 | 1 | 2√2 | |||||
tgα= | = | / | = | *3=2√2 | ||||
cosα | 3 | 3 | 3 |
a*sinβ | a*sinγ | |||
tgα= | lub tgα= | |||
c−a*cosβ | b−a*cosγ |
a*sinβ | ||
c−a*cosβ= | ||
tgα |
√7 | ||
c−2* | =(2*√2/3) /(2√2) | |
3 |
2√7 | 2√2 | 1 | ||||
c− | = | * | ||||
3 | 3 | 2√2 |
2√7 | 1 | |||
c− | = | |||
3 | 3 |
1 | 2√7 | 1+2√7 | ||||
c= | + | = | ||||
3 | 3 | 3 |
1+2√7 | ||
Odp. Trzeci bok trójkata ma dlugość | [jm] | |
3 |
2√2 | 2√2 | |||
sinα= | to h= | |||
3 | 3 |
1 | 2√7 | |||
|AD|= | i | DB|= | |||
3 | 3 |
1+2√7 | ||
c= | ||
3 |
α | β | γ | ||||
sinα+sinβ+sinγ=4cos | *cos | *cos | ||||
2 | 2 | 2 |