1 | ||
Prosta prostopadła m: y=ax+b, a= | ||
4 |
1 | ||
y= | x+b | |
4 |
1 | ||
m: y= | x+2 | |
4 |
−4 | ||
3x+4=0⇒x= | ||
3 |
−4 | ||
g( | )=0 | |
3 |
4 | |
+2m=0 | |
3 |
−4 | ||
2m= | ||
3 |
4 | ||
g(x)=−x− | ||
3 |
1 | ||
funkcja f(x)= | x2+bx−3 jest symetryczna względem prostej x=1. Oblicz b i wyznacz minimum. | |
4 |
−b | |
=p | |
2a |
−b | ||
1= | ||
1/2 |
1 | ||
b= | ||
2 |
1 | 1 | |||
f(1)= | + | −3 | ||
4 | 2 |
1 | ||
f(1)=−2 | ||
4 |
1 | ||
ymin=−2 | ||
4 |
−2 | ||
4. Oblicz min i max funkcji f(x)= | x2+6 w przedziale <−1;3> | |
3 |
−2 | 1 | |||
f(−1)= | +6=5 | |||
3 | 3 |