1 | 4 | |||
|u'= | v= | x3−6x | | ||
x | 3 |
4 | 4 | |||
=lnx( | x3−6x)−∫( | x2−6dx +C= | ||
3 | 3 |
4 | 4 | |||
=lnx( | x3−6x)− | x3+6x+C | ||
3 | 9 |
cosx2x+1 | ||
(cosx2)= | ||
2 |
1 | 1 | 1 | ||||
∫(cosx)2dx= | ∫cosx2x+1dx= | sin2x+ | x+C | |||
2 | 4 | 2 |
−1 | ||
|u'=x* | v=x| | |
x2 |
1 | 2 | |||
|u'= | v= | x3/2 | | ||
x | 3 |
2 | 2 | |||
= | x3/2lnx− | ∫x1/2dx+C= | ||
3 | 3 |
2 | 2 | 2 | ||||
= | x3/2lnx− | * | x3/2+C= | |||
3 | 3 | 3 |
2 | 4 | |||
= | x3/2lnx− | x3/2+C | ||
3 | 9 |
1 | ||
∫(cosx)2dx= | (cosxsinx+x) +C | |
2 |