?
| 4 | ||
Vk = | πR3 | |
| 3 |
| 1 | ||
Vs = | πr2H | |
| 3 |
| H | ||
sinα = | ⇒ H = lsinα = 2Rsin2α | |
| l |
| r | ||
cosα = | ⇒ r = lcosα = 2Rsinαcosα | |
| l |
| 1 | 8 | |||
Vs = | π4R2sin2αcosα * 2Rsin2α = | πR3 * sin4α * cos2α | ||
| 3 | 3 |
| 4 | 3 | |||
Vk = | πR3 ⇒ πR3 = | Vk − wstawiamy do Vs | ||
| 3 | 4 |
| 3 | 8 | |||
Vs = | Vk * | * sin4α * cos2α = 2Vk * sin4α * cos2α | ||
| 4 | 3 |
| 2 | ||
g'(t) = − 3t2 + 2t = 0 ⇒ t(−3t + 2) = 0 ⇒ t = 0 lub t = | ||
| 3 |
| 2 | 4 | 1 | 4 | |||||
g( | ) = | * | = | stąd | ||||
| 3 | 9 | 3 | 27 |
| 4 | ||
sin4α * cos2α ≤ | , stąd | |
| 27 |
| 4 | 8 | |||
Vs = 2Vk * sin4α * cos2α ≤ 2Vk * | = | Vk | ||
| 27 | 27 |
Inny sposób ( bez trygonometrii
x>0 H=R+x , r2= R2−x2
| π | π | |||
V(st) = | (R2−x2)(R+x) = | (R+x)2(R−x) | ||
| 3 | 3 |
| π | ||
V'(x)= | ( 2(R+x)(R−x)−(R+x)2 | |
| 3 |
| R | ||
V'(x)=0 ⇔ (R+x)(2R−2x−R−x)=0 ⇔ (R+x)(R−3x)=0 ⇒ x= | ||
| 3 |
| R | π | 4R | 2R | 32πR3 | ||||||
V(st, max)( | )= | *( | )2* | = | ||||||
| 3 | 3 | 3 | 3 | 27 |
| 4 | ||
V(kuli) = | πR3 | |
| 3 |
| R | ||
( sprawdzić czy jest maximum dla x= | ........... | |
| 3 |
| V(st,max) | 8 | ||
= ..... | |||
| V(kuli max) | 27 |
| 8 | ||
zatem V(st) ≤ | V(kuli) | |
| 27 |
A co gdy mamy taką sytuację
? (chyba trzeba wtedy rozważać 2 przypadki?)
| 1 | ||
Vs= | πr2H | |
| 3 |
| π | ||
Vs= | (2HR−H2)H , 2R−H>0 | |
| 3 |
| π | ||
Vs= | (2RH2−H3) , 0<H<2R | |
| 3 |
| π | ||
V's(H)= | (4RH−3H2) | |
| 3 |
| 4 | ||
H=0 lub H= | R | |
| 3 |
| 4 | π | 16 | 4 | |||||
Vmax=V( | R)= | * | R2(2R− | R= | ||||
| 3 | 3 | 9 | 3 |
| π | 32 | 8 | 4 | 8 | ||||||
= | * | R3= | * | πR3= | Vk | |||||
| 9 | 9 | 27 | 3 | 27 |