√x | ||
∫ | dx | |
2+x |
√x | ||
∫ | =|√x=t, x=t2, dx=2tdt |= | |
2+x |
t | t2 | t2+2−2 | ||||
∫ | 2tdt=2∫ | dt=2∫ | dt= | |||
2+t2 | t2+2 | t2+2 |
2 | ||
=2∫(1− | )dt= | |
t2+2 |
1 | ||
=2(t−2∫ | dt)+C= | |
t2+2 |
1 | ||
=2t−4∫ | dt+C= | |
t2+2 |
1 | t | |||
=2t−4* | arctg( | )+C= | ||
√2 | √2 |
t√2 | ||
=2t−2√2arctg( | )+C= | |
2 |
√2x | ||
=2√x−2√2arctg( | )+C | |
2 |
√x | ||
lim(A−>nieskończoność) [∫ | ][0,A]= | |
2+x |
√2x | ||
=lim(A−>nieskończoność) [2√x−2√2arctg( | )][0,A]= | |
2 |
√2A | √2*0 | |||
=lim(A−>nieskończoność) [2√A−2√2arctg( | )−2√0+2√2arctg( | }]= | ||
2 | 2 |
√2A | ||
=lim(A−>nieskończoność) [2√A−2√2arctg( | )−0]= | |
2 |
π | ||
=[nieskończoność−2√2* | ]=nieskończoność −całka rozbieżna | |
2 |