| x | x−1+1 | 1 | |||
= | =1+ | ||||
| x−1 | x−1 | x−1 |
| x | 1 | 1 | ||||
zatem ( | )'=(1+ | )'=− | ||||
| x−1 | x−1 | (x−1)2 |
| x | 1 | x | ||||
zatem (exp( | ))'=− | *exp( | ) | |||
| x−1 | (x−1)2 | x−1 |
| x | 1 | |||
Dla dowolnego x∊R\{1} exp( | )>0 oraz | >0 | ||
| x−1 | (x−1)2 |
| x | ||
zatem (exp( | ))'<0 więc funkcja maleje, ale coś sie dzieje w x=1 co nie.. (asymptota) | |
| x−1 |
| x | 1 | x | ||||
limx→1− | =" | "=−∞ więc exp( | )→"exp(−∞)"=0 | |||
| x−1 | 0− | x−1 |