matematykaszkolna.pl
planimetria czworokaty ania111: Punkty M i N dzielą ramiona trapezu w stosunku 2:1 (licząc od dłuższej podstawy). Wyraź długość odcinkaMN za pomocą długości podstaw trapezu a i b (a >b).
30 gru 22:28
Kacper:
1 2 

a+

b
3 3 
30 gru 22:46
Eta: Potwierdzam emotka
 a+2b 
i zapis bardziej "elegancki"

 3 
30 gru 22:50
Eta: rysunek |MN|=x+y Z podobieństwa trójkątów AKM ∼ACD z cechy (kkk) i ABC ∼ KNC z cechy (kkk)
b 3k a 3w 

=


=

x 2k y w 
 2 1 
to x=

b y=

a
 3 3 
|MN|= x+y=.......
30 gru 23:04
PW: Ja tak dla porządku zapytam (jak ten pilny mały Jaś co w każdej klasie się znajdzie): − A skąd wiadomo, że te kąty są odpowiednio równe?
30 gru 23:19
Eta: MN∥ AB ∥CD ( perfekcjonisto emotka Z lenistwa nie lubię pisać "elaboratów" ( bo nie lubię przedmiotów humanistycznych ) Właśnie z tej przyczyny wybrałam "matmę" emotka
30 gru 23:23
Eta: A czy "mały Jaś" słyszał o Talesie? czy tylko o Pitagorasie?
30 gru 23:26
PW: A teraz zupełnie poważnie pytam: − Czy maturzysta przyjmujący milcząco, że MN jest równoległy do podstaw, otrzyma pełną punktację za rozwiązanie? I z ciekawości zapytam (ale maturzystów, nie Ciebie emotka) − jak brzmi uzasadnienie?
30 gru 23:29
Metis: Gdyby dany odcinek nie był równoległy nie zachodzilaby własnośc taka że punkty M i N dziela ramiona w stosunku 2 do 1 . Mogę się mylić , i pisać głupoty. Nie lubię planimetrii i nie zbyt ja rozumiem.
30 gru 23:59
Kacper: PW ja by maksa nie dał, ale na maturze myślę, że wystarczy napisać, że są równoległe i uznają emotka Czego oni na maturze nie uznają
31 gru 08:49
Metis: Jeżeli potrafimy udowodnić, że punkty M i N są środkami ramion, to tym samym wykażemy, że odcinek MN, łączący środki tych ramion jest równoległy do podstaw. Punkty M i N są środkami ramion, zapewnia Nam to własność tego trapezu o podziale ramion w stosunku 2 do 1 , zatem odcinek MN jest równoległy do podstaw tego trapezu.
31 gru 11:23
PW: Ależ nie są środkami ramion − patrz dobry rysunek Ety.
31 gru 17:13
paulinka: to z czego to wynika w końcu ? ze ta prosta jest rownoległa
27 lut 23:56
paulinka: w czym którym z trojkatow ten tales zachodzi
28 lut 00:15
5-latek : emotka
28 lut 01:10