zadanie
abcdefg: oblicz cos3α jeśli sinα=√2/4 oraz α∊(π/2;π)
29 gru 18:01
cosinusx: cos3x=4cos
3x−3cosx=cosx(4cos
2x−3)=cosx(4−4sin
2x−3)=cosx(1−4sin
2x)=
| 2 | | 1 | | 1 | |
=cosx(1−4* |
| )=cosx(1− |
| )= |
| cosx |
| 16 | | 2 | | 2 | |
| 2 | | 14 | |
cos2x=1−sin2x=1− |
| = |
| |
| 16 | | 16 | |
cosx<0 , bo II ćwiartka
30 gru 23:43