

!
| √x2+1−√x+1 | ||
lim | ||
| 1−√x+1 |
zamiast lim x−>0 bede pisac lim, zeby bylo krocej...
| √x2+1 − √x+1 | √x2+1 + √x+1 | |||
lim | * | * | ||
| 1−√x+1 | √x2+1 + √x+1 |
| 1+√x+1 | ||
| 1+√x+1 |
| (1+√x+1)(x2+1−x−1) | ||
= lim | = | |
| −x(√x2+1+√x+1) |
| (−x+1)(1+√x+1) | ||
= lim | = | |
| √x2+1+√x+1 |
| 1 *2 | ||
= | = 1 | |
| 2 |
| √x2+1−√x+1 | √x2+1+√x+1 | 1+√x+1 | |||
* | * | = | |||
| 1−√x+1 | √x2+1+√x+1 | 1+√x+1 |
| (x2+1−x−1)(1+√x+1) | x(x−1)(1+√x+1) | |||
= | = | = | ||
| (1−x−1)(√x2+1+√x+1) | −x(√x2+1+√x+1) |
| (x−1)(1+√x+1) | ||
= | ||
| −(√x2+1+√x+1) |