√x2+1−√x+1 | ||
lim | ||
1−√x+1 |
√x2+1 − √x+1 | √x2+1 + √x+1 | |||
lim | * | * | ||
1−√x+1 | √x2+1 + √x+1 |
1+√x+1 | ||
1+√x+1 |
(1+√x+1)(x2+1−x−1) | ||
= lim | = | |
−x(√x2+1+√x+1) |
(−x+1)(1+√x+1) | ||
= lim | = | |
√x2+1+√x+1 |
1 *2 | ||
= | = 1 | |
2 |
√x2+1−√x+1 | √x2+1+√x+1 | 1+√x+1 | |||
* | * | = | |||
1−√x+1 | √x2+1+√x+1 | 1+√x+1 |
(x2+1−x−1)(1+√x+1) | x(x−1)(1+√x+1) | |||
= | = | = | ||
(1−x−1)(√x2+1+√x+1) | −x(√x2+1+√x+1) |
(x−1)(1+√x+1) | ||
= | ||
−(√x2+1+√x+1) |