matematykaszkolna.pl
Równanie trygonometryczne lepus:
 7 
sin6x+cos6x=

 16 
Jakaś wskazówka?
26 gru 00:46
ICSP: wzór a3 + b3.
26 gru 00:48
Mila:
 7 
(sin2x+cos2x)*(sin4x−sin2*cosx+cos4x)=

 16 
 7 
1*[(sin2x+cos2x)2−2sin2x*cos2x−sin2x*cos2x]=

 16 
 7 
1−3*(sinx*cosx)2=

 16 
 7 
−3*(sinx*cosx)2=

−1
 16 
 9 
3*(sinx*cosx)2=

 16 
 3 
(sinx*cosx)2=

 16 
 3 3 
sinx*cosx=

/*2 lub sinx*cosx=−

/*2
 4 4 
 3 3 
2sinx*cosx=

lub 2sinx*cosx=−

 2 2 
 3 3 
sin(2x)=

lub sin(2x)=−

 2 2 
dokończ
26 gru 17:22
Eta: sin6x+cos6x= ( sin2x+cos2x)3−3sin2x*cos2x(sin2x+cos2x)
 7 9 4 
1−3sin2x*cos2x=

⇒ 3sin2x*cos2x=

/*

 16 16 3 
 3 
4sin2x*cos2x=

 4 
 3 3 3 
sin2(2x)=

⇒ sin(2x)=

lub sin(2x)= −

 4 2 2 
i dokończ ..........
26 gru 17:51
lepus: Dziękuję za pomoc emotka
26 gru 22:39
Eta: Ooo emotka lepus wrócił z randki emotka
26 gru 23:31